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Scar and antiscar quantum effects in open chaotic systems

L. Kaplan*
Department of Physics and Society of Fellows, Harvard University, Cambridge, Massachusetts 02138

~Received 21 August 1998; revised manuscript received 3 February 1999!

We predict and numerically observe strong periodic orbit effects in the properties of weakly open quantum
systems with a chaotic classical limit. Antiscars lead to a large number of exponentially narrow isolated
resonances when the single-channel~or tunneling! opening is located on a short unstable orbit of the closed
system; the probability to remain in the system at long times is thus exponentially enhanced over the random
matrix theory prediction. The distribution of resonance widths and the probability to remain are quantitatively
given in terms of only the stability matrix of the orbit on which the opening is placed. The long-time remaining
probability density is nontrivially distributed over the available phase space; it can be enhanced or suppressed
near orbits other than the one on which the lead is located, depending on the periods and classical actions of
these other orbits. These effects of the short periodic orbits on quantum decay rates have no classical coun-
terpart, and first appear on times scales much larger than the Heisenberg time of the system. All the predictions
are quantitatively compared with numerical data.@S1063-651X~99!12805-8#

PACS number~s!: 05.45.2a, 03.65.Sq
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I. INTRODUCTION

A. Wave-function scarring

Wave-function scarring, the enhancement or suppres
of quantum eigenstate intensity along an unstable orbit of
corresponding classical system, is a fascinating and gen
property of quantum chaotic behavior. Along with dynamic
localization, it is one of the striking ways in which a qua
tum system can show deviation from ergodicity at the sing
channel level even though the classical dynamics is c
pletely ergodic. Wave-function intensities near a sh
unstable periodic orbit follow a distribution far from tha
predicted by random matrix theory~RMT!, with some wave-
functions having much more intensity and other much l
than would be predicted based on Gaussian random fluc
tions. The phenomenon is at first glance paradoxical, bec
the long-time~and indeed stationary! quantum behavior re
tains a memory of the short-time classical motion, a mem
that is completely absent in the long timeclassicaldynamics
of a chaotic system. Scarring has been observed experim
tally in a wide variety of systems, including microwave cav
ties @1,2#, semiconductor structures@3#, and the hydrogen
atom in a magnetic field@4,5#.

A theory of scarring based on the linearized evolution
Gaussian wave packets was first provided in Ref.@6#; later
theoretical work by Bogomolny@7# in coordinate space an
Berry @8# in Wigner phase space followed. These made p
dictions about the average intensity on a classical perio
orbit of states in a given energy band; however, becaus
the energy smoothing involved, no predictions were poss
about the statistical properties of individual peak heights
the local density of states. Subsequently, Agam and Fish
@9# developed the idea of detecting and quantifying scars
integrating wave-function intensity over tubes in phase sp
surrounding the periodic orbit. More recently a nonline
theory was developed@10# which made it possible to predic
the statistical properties of individual wave functions, in t
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semiclassical limit. A homoclinic orbit analysis showed th
long-time return amplitude to the vicinity of a periodic orb
bore the imprint of the short-time linearized classical dyna
ics around the periodic orbit. This leads to a natural sepa
tion of scarring intensity into a classical short-time comp
nent and a random long-time component, as sugge
already in Ref.@11#.

In Ref. @12#, predictions were made about the distributio
of wave-function intensities on a periodic orbit and at a g
neric point in phase space. The full distribution of intensiti
which includes samples taken over all of phase space, h
long tail ~compared to the Porter-Thomas prediction
RMT!, dominated by the effect of the least unstable perio
orbit. The functional form of this tail is given in the sem
classical~high-energy! limit very simply in terms of the sta-
bility exponent of this least unstable orbit, as long as
optimally oriented test basis is chosen. Furthermore, u
ensemble averaging a power-law intensity distribution tai
obtained, in sharp contrast with the exponential tail predic
by RMT. This result is also to be contrasted with the lo
normal intensity distribution tail which obtains in diffusiv
systems@13,14#. Thus, although RMT is accepted as th
zeroth-order approximation for both chaotic and disorde
quantum systems~i.e., it is the dynamics-free baseline wit
which true system properties are to be compared!, deviations
from RMT predictions can be qualitatively different in th
two cases, providing an impetus for the present research

B. Chaotic scattering

The numerically tested quantitative predictions in Re
@10,12# concerned the local densities of states in a clo
system. Certain properties of open systems, such as r
nance widths and conductances, may, however, be m
amenable to experimental verification@15#. Much important
theoretical work has been done on the problem of quan
chaotic scattering, mostly in the regime of a large numbe
open incoming and outgoing channels. This is a very natu
limit to take, for example, in billiard~hard wall! systems
with a fixed geometry, where the number of open chann
5325 ©1999 The American Physical Society
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5326 PRE 59L. KAPLAN
becomes large as the wavelength decreases. In this su
tion we discuss a few of the established results in the s
tering literature. We begin by mentioning particularly th
important early work of Gaspard and Rice, who studied
classical, semiclassical, and quantum problem of a point
ticle scattering off three hard disks in a plane@16#. The meta-
stable classical states there were observed to be fracta
chaotic, with chaos~as measured by the rate of KS entro
increase per unit time! inhibiting the rate of classical escap
from the system. Interestingly, some of the quantum sca
ing resonances have lifetimes significantly longer than t
of the longest-lived classical resonance. This enhanceme
certain quantum lifetimes can be understood semiclassic
as an interference effect, and indeed a semiclassical u
bound on possible quantum lifetimes was obtained usin
symbolic code for the classical dynamics.

The three-disk model was also used by Eckhardt@17# in
his analysis of the spectral form factor and its relation
delay times in an open system. In analogy with closed s
tem behavior, the short-time quantum dynamics was foun
be nonuniversal and governed by a few isolated unsta
periodic orbits. At longer times, statistical interference b
tween many classical trajectories takes over, and a clas
escape law holds. Finally, at very long times, lifetimes
individual narrow quantum resonances dominate the rat
decay.@In the present work, transmission through very sm
openings is considered, so the resonances are always iso
and the bulk of the decay necessarily takes place in this l
time individual-resonance regime.# We also note that in ear
lier work, Cvitanovic and Eckhardt@18# showed that the
quantum resonances of a three-disk system can be accur
computed semiclassically, using cycle expansions which
press the effects of long periodic orbits in terms of a f
short classical trajectories.

Blumel and Smilansky@19# studied carefully the effect o
irregular classical scattering on the quantum scattering
trix and its energy correlations, in the same limit of ma
open channels~i.e., strongly overlapping resonances!. Semi-
classical arguments were used to show that fluctuations
energy of theSmatrix and cross section should be consist
with Ericson fluctuations, previously observed in the cont
of nuclear scattering. Ericson fluctuations are a direct con
quence of RMT, and such fluctuations were indeed meas
numerically, inside energy ranges~scaling as\21) where the
statistical semiclassical arguments are expected to work

Doron, Smilansky, and Frenkel@20# studied chaotic scat
tering with application to electronic transport through me
scopic devices as well as to the transmission of microwa
through junctions. Fluctuations in the transmission coe
cient were again shown to be consistent with RMT pred
tions, and the dependence of transmission correlations
external parameters was examined. Connections were m
with the time domain behavior of chaotic systems, and
effect of absorption was discussed. Jalabert, Baranger,
Stone@21# showed that ballistic chaotic conductors displ
universal conductance fluctuations~UCF’s!, the magnitude
of the fluctuations being of order one channel and indep
dent of the total number of channels transmitted. Th
pointed out that these~RMT-predicted! fluctuations arise
from interference, and are not obtainable for a classicaS
matrix. The authors also noticed nonuniversal behavior a
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ing from short trajectories through the device, i.e., those
jectories which are short compared to the classical mix
time of the system. The universal regime is expected to h
when the typical trajectory is trapped for many bounces~so
that a statistical analysis of the transport is valid!, and yet is
short compared to the Heisenberg time~so that the reso-
nances are wide and many of them overlap at any gi
energy!. Of course, in the semiclassical limit of high energ
or large system size, it is easy to satisfy simultaneously th
two conditions.

Jung and Seligman@22# have analyzed carefully the im
portant distinction that must be made between chaos i
Hamiltonian flow and chaos in the resulting classical scat
ing map. They have given several examples of chaotic s
tering maps arising from integrable dynamics without top
logical chaos, and have studied the quantum mechanic
these unusual systems. The authors found that eigenp
statistics of the quantumS matrix depend primarily on the
chaoticity of the scattering map, whereas basis-depen
quantities such as the distribution of matrix elements tend
follow RMT behavior only in the presence of topologic
chaos.

Finally, we mention the work of Borgonovi, Guarner
Rebuzzini, and Shepelyansky@23#, who have studied quan
tum transport fluctuations in the context of kicked chao
maps, and specifically in modified versions of the quant
kicked rotor. They have again observed Ericson-like tra
mission fluctuations; the transmission probability is se
correlated on an energy scale related to the inverse time
the particle spends in the interaction region. In the diffus
regime, the amplitude of the UCF’s ('2/15) was found to be
in good agreement with RMT expectations. The statistics
S matrix fluctuations were also numerically investigated,
various transport regimes. For ballistic transport, the fluc
ating part of theS matrix agrees well with a Gaussian ra
dom model, but systematic deviations from RMT were o
served once transport through the device became diffus
In the diffusive ~ohmic! regime,S matrix correlations also
begin to deviate from a Lorentzian shape. Finally, in t
quasi-one-dimensional localized regime, the distribution
transmission rates becomes log-normal, consistent with
prediction for an Anderson insulator.

The literature we have been discussing focuses alm
exclusively on the regime of large classical openings, w
many open channels and a strongly overlapping resona
structure. In that context, deviations from RMT that arise
the presence of disorder have also been considered@24#. In
the present work, we focus on the opposite limit of sm
openings in a classically chaotic system, where the re
nances are isolated and have a one-to-one correspond
with the eigenstates of a closed system. The isolated r
nance regime appears in the presence of leads narrow c
pared to a wavelength, and more generally when tunnelin
the source of coupling of a chaotic system to the outs
world. @Numerical calculations are now in progress for
simple model where metastable states decay through tun
ing out of a smooth potential well.# Much work has been
done to analyze narrow openings within the context of RM
@25#. Here we address~going beyond the naive RMT ap
proximation! the distribution of decay lifetimes in a leak
chaotic system, and the probability to remain in such a s
tem @26# as a function of time and the location of th
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‘‘leak’’ ~open channel!. The distribution in phase space o
the remaining probability density at long times is consider
as well as the dependence of the probability to remain
where the particle was first ‘‘injected’’ into the system
These last two questions bring us into contact with wa
function correlations and transport in chaotic systems, wh
~as we show! can be very different from RMT expectation
where periodic orbits are involved. All the quantitative pr
dictions which follow are tested numerically. A study of co
ductance properties in two-lead chaotic systems, includ
mean conductance, conductance fluctuations, distributio
peak heights, and peak correlations~and how all these de
pend on the placement of one or both leads in relation to
classical orbits! is forthcoming@27#.

II. CLASSICAL AND QUANTUM WEAKLY OPEN
CHAOTIC SYSTEMS

A. Classical behavior

We begin by considering a small opening in a classica
chaotic system, which allows a particle to escape from
system. We will often use language suggesting that
‘‘opening’’ is defined in position space, as it would often b
for example, in a mesoscopic experiment. However, the
malism considered here is much more general: all tha
required is that the opening be localized in the class
phase space; escape routes that are defined exclusively
terms of position or momentum are special cases of this
simple example of a momentum space opening is a pote
barrier that allows particles to leave only if their momentu
is directed almost normal to the wall@28#. An opening hav-
ing the shape of a phase-space Gaussian naturally oc
when one considers tunneling out of a metastable cha
well formed by a continuous potential@29#.

Now we can imagine forming a mesh in classical pha
space with each cell the size of the opening; because
classical dynamics~in the closed system! is chaotic, prob-
ability density starting in one such cell will soon be even
distributed over all the available cells. The time for this
happen is logarithmic in the size of the openingw:

Tmix;
u lnwu

l̄
. ~1!

Here l̄ is the Lyapunov exponent of the classical dynam
~the mean rate of chaotic divergence of classical orbits!, and
the total size of phase space, in terms of whichw must be
measured, has been set to unity. On the other hand, th
cape time from the system is inversely proportional to
leak sizew, so a small value ofw will cause complete mixing
of the remaining probability to take place on a time sc
much shorter than the scale on which probability is leak
out. One obvious consequence is that the probability to
main in the open classical system follows an exponen
law. @Exponential classical decay depends on the cha
~strongly mixing! nature of the classical system: in such sy
tems the Frobenius-Perron operator has anisolated eigen-
value at 1. Nonexponential decay laws may obtain in in
grable systems, even for an infinitesimal opening.# This
behavior is, of course, independent of the position of
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leak. Also, density is constantly redistributing itself, so th
the remaining probability density remains evenly distribut
on the scale of our mesh, except in a corridor of leng
scaling as 1/l̄ leading forward in time from the position o
the opening. Notice that the width of the corridor where t
probability to remain is suppressed scales as the size of
opening. Thus, this corridor has no effect on the quant
behavior when the opening is small compared to\. Finally,
even if the initial probability is not evenly distributed ove
the entire phase space, the long-time behavior is unaffe
~as long as the bulk of the probability is not initially place
in a corridor similar to the one described above, but lead
backwardsin time from the opening!.

In contrast to these results, we will find in the quantu
case that the probability to remain in the system at long tim
depends strongly on whether the opening is located o
classical ~unstable! periodic orbit, even though the initia
probability density is evenly distributed. Again, we see th
long-time quantum behavior retains a better memory
short-time classical dynamics than does the long-time cla
cal behavior. Also, we will see that given a leak placed o
periodic orbit, the remaining probability distribution at lon
times can be strongly affected not just on the periodic o
itself, but also on theother short periodic orbits of the sys
tem. Enhancement or suppression can be observed dep
ing on the energy range considered and on the classica
tions of the orbits in question. Similarly, the probability
remain at long times will be affected if the original probab
ity is injected on an unstable periodic orbit different from t
one where the opening is located. All this is true even thou
the decay is taking place on a time scale much longer t
any other time scale in the problem~the period of the short
orbit, the mixing time, and also the Heisenberg time, i.e.\
over the mean level spacing!.

B. Quantum mechanics and RMT

Let the quantization of our classical system be given
anN-dimensional Hilbert space (N is the number of Planck-
sized cells in the classical phase space!, with dynamics in the
closed system given by the HamiltonianH0. If the opening is
very small ~less than one open channel, so that the re
nances are nonoverlapping!, we can write an effective
Hamiltonian for the open system

H5H02 i
G

2
ua&^au, ~2!

whereua& is a quantum channel associated with the openi
and G is the decay rate in that channel~taken to be small!.
ua& could be a Gaussian wavepacket enclosing the hole,
position or momentum state. It is important to note here t
the opening is small compared to\ ~less than half a wave
length if in position space!. One can of course consider th
effects of scarring on larger openings, or ones which are
thus localized to a single channel; these possibilities are c
sidered towards the end of the present paper. We empha
however, that the phenomenon discussed here is alre
present in its full form for the tiniest single opening, witho
the complications that arise in the more general case.
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For a small hole, the main effect of the opening on a wa
function uCn& of the closed system is that it acquires a dec
width proportional to the intensity of the wave function
the opening:

Gn5G z^Cnua& z2. ~3!

If the intensitiesxn[Nu^Cnua&u2 follow a chi-squared distri-
bution, as in RMT, we have probability P(x)
5(1/A2px)exp(2x/2) for real overlapŝ Cnua&, and P(x)
5exp(2x) for complex overlaps. Consider the complex ca
Because mixing between the states of the closed system
be neglected in the smallG regime, the total probability to
remain in the system is given by a sum over these state

Prem~ t !5
1

N (
n50

N21

e2(xn /N)Gt

5E
0

`

dxP~x!e2xGt/N

5E
0

`

dxe2xe2xGt/N5
1

11Gt/N
. ~4!

~Remember thatN is the total number of states in the syste
the classical decay rate is given byGcl5G/N because only
one channel has the possibility to decay.! We see that at
short times (t!Gcl

21), the probability to remain in the system
is Prem(t)'12Gclt, as expected, while at long times w
have the asymptotic behavior

Prem~ t !'
1

Gclt
. ~5!

In the case ofM independent weakly open channels, i.e.,

H5H02 i (
i 50

M21
G ( i )

2
ua( i )&^a( i )u, ~6!

the classical decay rate is given by

Gcl5
1

N (
i 50

M21

G ( i ) ~7!

and the RMT probability to remain is

P~ t !5 )
i 50

M21
1

11G ( i )t/N
. ~8!

Taking M→` while keeping the total decay rateGcl con-
stant, exponential decay consistent with the classical pre
tion is obtained. On the other hand, fixing the number
channelsM and takingt→`, we observe the power-law be
havior

Prem~ t !5
~N/t !M

)
i 50

M21

G ( i )

. ~9!

The case of real overlaps^Cnua& follows similarly: each
real random overlap counts as half of a complex one, so th
Prem(t);t2M /2. In the literature one often considers the d
e
y
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tribution of delay times for scattering off of the system
question: there one must include the probability of popu
ing a given resonance in the first place, which of course
proportional toGn . This leads to an extra factor oft in the
denominator, givingPdelay(t);t2M21 for complex overlaps
and Pdelay(t);t2M /221 for real overlaps. In our case, w
imagine the system to be populated first, before the lea
opened up, and thus no extra power oft is present.

III. EFFECT OF PERIODIC ORBITS

A. Probability to remain

We now go beyond RMT to consider the effect of re
dynamics on the quantum probability to remain in a clas
cally chaotic system. Take the escape channelua& to be on or
near an~unstable! periodic orbit of instability exponentl.
The smoothed local density of states atua& is obtained by
Fourier transforming its short-time autocorrelation functio
which is easily obtained by linearizing the classical equ
tions of motion near the unstable orbit@6,10,12#. Thus, for
example, if the periodic orbit in question is a fixed point of
discrete time map, andua& is a Gaussian wave packet opt
mally aligned along the stable and unstable manifolds of
orbit, then the short-time autocorrelation function~in the
closed system! is given by

Alin~ t ![^aua~ t !&5
e2 ift

Acoshlt
. ~10!

Here 2f is a phase associated with one iteration of t
orbit: it is given by the classical action in units of\, plus a
Maslov phase as appropriate. The subscript ‘‘lin’’ indicat
that the expression is obtained within the linearized class
approximation; it is valid on time scales short compared
the mixing timeTmix;u ln\u/l̄.

A more general form of Eq.~10! applies for a nonopti-
mally oriented wave packet~e.g., a position state or momen
tum channel could be nonoptimal depending on the direc
of the invariant manifolds at the periodic point!, and also for
a channel not exactly centered on a periodic point@27,30#. In
particular, for a wave packet centered on the periodic o
but not optimally oriented with respect to its invariant man
folds, the form above becomes

Alin~ t !5^aua~ t !&5
e2 ift

Acoshlt1 iQsinhlt
. ~11!

In Eq. ~11!, Q is a nonoptimality parameter: in a coordina
system where the stable and unstable manifolds are orth
nal, Q is a function of the angle between the orientation
the phase-space Gaussian~at some fixed eccentricity! and
either of these two directions. Alternatively, if the wav
packetua& is fixed to have a circular shape in phase spa
~i.e., to have equal and uncorrelated uncertainties inq and
p), Q becomes a function of the nonorthogonality betwe
the stable and unstable manifolds. In any case, as long aQ
is not very large, the qualitative behavior is not mu
changed, and although analytic results are less easy to o
for nonzeroQ, quantitative predictions can be readily pr
duced for comparison with any experimental or numeri
data. The key point for our purposes here is that for a sm
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exponentl, the autocorrelation function remains large f
the firstO(l21) iterations of the orbit, and the local densi
of states has a short-time envelope

Slin~E![(
t

eiEtAlin~ t ! ~12!

of width scaling asl and height scaling asl21 ~also see Fig.
1 below!.

Nonlinear recurrences on time scales beyond the mix
time ~associated with orbits homoclinic to the original pe
odic orbit! lead to fluctuations multiplying this spectral e
velope, eventually producing a line spectrum

S~E!5(
n

u^Cnua&u2d~E2En!. ~13!

The line heightsxn5Nu^Cnua&u2 are distributed in each en
ergy region as a chi-squared distribution with meanSlin(E)
@12#:

P~x!5
1

Slin~E!
e2x/Slin(E). ~14!

Thus, the distribution of decay widths can be strongly ene
dependent; in particular, the probability to remain in the s
tem at long times is now given by

Prem~ t !5E
0

`

dxP~x!e2xGt/N

5
1

11Slin~E!Gt/N

→
1

Slin~E!

1

Gclt
~15!

if initially only states with energy aroundE are populated.

FIG. 1. Smoothed local densities of statesSlin(E) are plotted as
a function of energy on a periodic orbit of instability exponentl
50.20 ~solid curve! and on an orbit withl50.15 ~dashed curve!.
The mean resonance width for a lead placed on such a periodic
will be proportional toSlin(E). We observe the peak at the EB
quantization energyE50 @Eq. ~16!# which scales asl21, the ex-
ponential decay betweenE50 andE5p @Eq. ~17!#, and the mini-
mum at the anti-EBK energyE5p, which is exponentially small in
l @Eq. ~18!#. The RMT predictionSlin(E)51, which is applicable
away from any short periodic orbit, is plotted as a dotted line.
g

y
-

The scarred states~those with energy close to satisfyin
the EBK quantization condition! have Slin(E).1 and thus
decay much faster than the antiscarred states@11#, which are
far from satisfying EBK and thus haveSlin(E),1. Let us
examine more closely these two distinct energy regim
Near the quantization energyE5f, the smoothed density o
statesSlin(E) has its peak; its height scales inversely withl
for small l @6#:

Slin~E5f!'c/l, ~16!

wherec55.24 is a numerical constant@12#. The width of this
peak inSlin(E) scales linearly withl for small l, and all of
the anomalously enhanced wave-function intensities co
from this energy region, as was observed and confirmed
merically in Ref.@12#. In the open system, these states p
duce an excess of large resonance decay widths and d
faster @by a factor ofO(l21)] than would be predicted by
RMT.

~We note that our presentation here is in the context o
discrete-time map; thusE is a dimensionless quasienerg
that takes values in the interval@0,2p#. For a real
continuous-time system with a periodic orbit of periodTP , it
is of course the quantityETP /\ that must be compared with
the dimensionless numberl. Also, the smoothed density o
states will then have an infinite sequence of peaks, each
tered on an energy satisfying the EBK quantization condit
@10#. The ratio of each peak width to the spacing betwe
peaks scales asl. The infinite sequence of scarring peaks
modulated by a wide envelope associated with the ene
width DE of the initial wave packet: in the semiclassic
limit, this width is large compared to the spacing betwe
peaks and small compared to the total energy. In the t
domain, the scaleDE is associated with the finite timeTF
;\/DE which the wave packet takes to traverse itself un
free evolution each time that its center returns to the origi
position @10#.!

Because our focus here is on the long-time behavior
weakly open systems, we are more interested in the~comple-
mentary! suppression of the smoothed local density of sta
far from the resonance energy. Again, we consider the str
scarring regime, wherel!1: then the linear spectrum fall
off exponentially far away from the peak

Slin~E!'
2p

l
e2puE2fu/2l ~17!

for uE2fu@l. Within O(l) of the optimal antiscarring en
ergy,E5f1p, the spectrum deviates from the exponent
law and smoothly approaches the value

Slin~E5f1p!'
4p

l
e2p2/2l ~18!

at the minimum. The region withinO(l) of E5f1p is
thus responsible for producing the smallest wave-funct
intensities, and the narrowest resonances in the corresp
ing open system. This excess of exponentially small de
rates is as dramatic a signature of the underlying class
behavior as the long wave-function intensity distribution ta
found in @12#. As we will observe in the next section, th
antiscarring effect on the long-time behavior of open syste

bit
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can be very striking even for moderate exponentsl ~e.g.,
l'1), as long as the lead is optimally placed with respec
the periodic orbit.

Smoothed local densities of statesSlin(E) on periodic or-
bits of instability exponentsl50.20 ~solid curve! and l
50.15 ~dashed curve! are shown graphically in Fig. 1. Th
figure can be viewed as representing the average w
function intensity on the periodic orbit in a closed system
a function of energy, or the mean resonance width~in units
of Gcl) at that energy in the weakly open system. The ph
f50 has been chosen so as to makeE50 the EBK energy
at which maximum scarring occurs@Eq. ~16!#. A half-log
scale is used to emphasize the exponential falloff in aver
resonance width betweenE50 andE5p @Eq. ~17!#, and the
minimum near the anti-EBK energyE5p @Eq. ~18!#. For
reference, the smoothed local density of states in RMT~ap-
plicable when the lead is not in the vicinity of any sho
periodic orbit! is displayed as a dotted line in the figure.

We now consider the energy-averaged probability to
main in the open system: this will be the quantity studied
detail numerically in the next section, where the model s
tem is a~nonenergy conserving! discrete-time kicked map
~For an energy-conserving system, varying the strength
weak magnetic field and thus sweeping through different v
ues of the phasef would produce the same result.! Again,
because the perturbation induced by opening up the syste
small, there is little mixing among states of different ener
Thus the total probability to remain is obtained simply
averaging the probabilities at the different energies. Fr
Eq. ~15! we see that at short times, the classical behavio
recovered:

Prem512^Slin&Gt/N512Gclt, ~19!

as^Slin&5Alin(0)5^aua&51 by normalization. Thus at shor
times,t!Gcl

21 , the faster-decaying scarred states and slow
decaying antiscarred states always cancel exactly and
quantum signature of the underlying classical dynamics
be observed. On the other hand, at long times, i.e., fot
@@Slin(Emin)Gcl#

21, we obtain the very different behavior

Prem~ t !5
^Slin

21&
Gclt

. ~20!

HereEmin is the energy at which the smoothed spectrum
its minimum; for an optimally placed leadua& this energy is
exactlyp out of phase with the EBK energyf, as discussed
above@Eq. 18!#. ^Slin

21& is the inverse of the smoothed dens
of states atua&, averaged over energy~or weak magnetic
field!.

As ^Slin&51 by definition, any fluctuations in the
smoothed spectrum resulting from short-time recurren
will cause ^Slin

21& to be greater than 1, resulting in an e
hanced probability to remain at long times. In particular,
an optimally placed lead@corresponding to Eq.~10!#, let us
consider the strong scarring regime of smalll. This gives the
exponentially large enhancement

^Slin
21&5S l

2p D 2

ep2/2l. ~21!
o
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This long-time behavior is completely dominated by t
most antiscarred states, i.e., those with energy withinO(l)
of Emin5f1p @Eq. ~18!#. For a nonoptimally placed lead
with moderate nonoptimality parameterQ @see Eq.~11! and
discussion following# we find empirically a similar exponen
tial enhancement of the long-time probability to remain

^Slin
21&5S l

2p D 2

e(p2/22bQ)/l, ~22!

whereb51.1 is a numerical constant.
If the stateua& defining the phase-space location of t

opening is centered off of the periodic orbit, but within\ of
the orbit, one still has fluctuations in the linear density
states and consequently an enhancement in the probabili
remain at long times. An analytic form for the linear aut
correlation function in such a case can be found in Ref.@30#.
For a circular minimum-uncertainty phase-space open
centered a distanced away from a periodic orbit with smal
exponentl, the energy-averaged value^Slin

21& scales as

^Slin
21&;l2e(p2/22dd/A\)/l, ~23!

whered is yet another numerical constant.d can be a dis-
placement along either the stable or unstable direction a
from the orbit. Thus, deviations from RMT behavior are o
served in an area scaling as\ surrounding the periodic orbit
Maximum enhancement of^Slin

21& ~i.e., enhancement of orde

l2ep2/2l) occurs ford,O(lA\), corresponding to a phase
space area scaling asl2\ surrounding the orbit. Thus, if we
consider the long-time probability to remain in the syste
averaged over all possible positions of the lead, we obtain

Prem5
11O~\l4ep2/2l!

Gclt
. ~24!

~The correction to RMT is obtained by multiplying the max
mum obtainable enhancement by the size of the phase-s
region where such enhancement occurs.! In principle, contri-
butions from all the periodic orbits need to be added, ho
ever, if orbits with smalll exist, they will clearly dominate
any such sum. The result is that at finite energy, expon
tially large ~in 1/l) deviations from RMT are found even i
the phase-space averaged analysis. In the\→0 limit of any
given classical system, the RMT behavior is recovered
cause the chance of a lead being found on the short peri
orbit goes to zero. In Sec. IV B, we present theoretical p
dictions and numerical data measuring the probability to
main in the system at long times as a function of the locat
of the opening.

B. Probability density at long times
and dependence on initial conditions

Up until now we have been focusing on the distribution
resonance widths and on thetotal probability to remain in
the system starting from auniform initial state, all as a func-
tion of the location of the leadua&. In other words, while
changing the location of the opening, we have always b
tracing over the initial and final states of the system. We n
proceed to address two related questions, both of which
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quire us to consider transport properties and wave func
intensity correlations within the system.

First, still taking the initial filling to be uniform, and fix-
ing the location of the opening to be on a periodic orbit, it
natural to ask how the long-time probability density rema
ing in the system distributes itself over phase space. Cla
cally, we expect the remaining probability always to be
distributing itself on a time scale short compared to
decay time, and thus to be uniform except in a very narr
corridor encompassing the unstable orbit. The width of
corridor scales as the size of the opening. In RMT, of cou
the remaining probability is also completely uniform exce
at phase space locations having nonzero overlap withua&. In
contrast, we find that in the real quantum system, the rem
ing probability density is strongly suppressed in a corridor
size\ around the orbit, much wider than the size of the le
Even more interesting is the fact that the probability dens
can be either relatively enhanced or suppressed along
other unstable orbits of the system, depending on the cla
cal actions associated with these orbits.

Before proceeding, we mention a closely related proble
which can be thought of as a time-reversed version of
one stated above. Instead of initially filling the system with
uniform density, we inject probability in some known initia
state and look at the probability to remain after a long ti
as a function of this initial state. This state, which we c
ub&, should be classically well defined, i.e., it can be a pha
space Gaussian, or a position or momentum state, as
cussed above.

The two problems are in general distinct: ifH is the non-
Hermitian quantum Hamiltonian, the first involves the qua
tity ^bue2 iH †teiHt ub&, while the second measure

^bueiH †te2 iHt ub&. However, whenG is very small ~in the
regime of nonoverlapping resonances!, H is nearly normal
(H†H'HH†), the distinction between left and right eige
states vanishes, and the two quantities both converge to
eigenstate sum

Prem
b ~ t !5(

n
z^buCn& z2e2Gnt. ~25!

For ub& not on the periodic orbit containing the leadua&, the
quantity u^buCn&u2 is independent ofGn;u^auCn&u2, and
follows its own chi-squared distribution with mean scaling
Slin

b (E). HereSlin
b (E) is the Fourier transform of the linear

ized ~short-time! autocorrelation function of the test sta
ub&; it is to be distinguished fromSlin(E)[Slin

a (E), the
smoothed local density of statesat the lead. We easily ob-
tain, at energyE,

Prem
b 5

Slin
b ~E!

11Slin
a ~E!Gt/N

→
Slin

b ~E!

Slin
a ~E!

1

Gclt
. ~26!

Averaging overE, we obtain the ratio of the remainin
probability density atub& to the average remaining density
long times:

Prem
b

Prem
5

^Slin
b /Slin

a &

^1/Slin
a &

. ~27!
n
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We see that this ratio goes to unity ifSlin
b has no energy

dependence, i.e., ifub& does not lie on a short periodic orbi
~Notice that for a Hamiltonian system, the test stateub& is
kept fixed, centered at some energyE0, while we sweep
through resonances at different nearby energiesE. The ques-
tion then is whether the center of the test stateub& is or is not
close to a periodic orbit at energyE0. Of course, one could
instead imagine shifting the test state so as always to
centered at energyE, in which case it would be more natura
to consider short orbits at energyE. The difference is unim-
portant as long asE2E0 is small compared to the energ
width of the Gaussianub&.! If the position ua& of the lead
itself does not lie on a periodic orbit, the remaining dens
profile will of course be flat overall statesub&. However, if
both ua& and ub& lie on periodic orbits, the probability to be
found atub& can be either suppressed or enhanced, depe
ing on whether the energy envelopesSlin

a and Slin
b are in or

out of phase in the energy range being averaged over.
simplicity, let us consider an example where the periods
instability exponents of the two orbits are equal. Then
two smoothed energy envelopes are identical, up to a rela
phase shift~the difference betweenfa and fb), which can
be adjusted by varying a magnetic flux enclosed by one
the orbits. If the two are exactly in phase,Slin

a 5Slin
b , then the

ratio in Eq. ~27! reduces to 1/^Slin
21&, which, we recall from

our previous discussion, is a quantity exponentially smal
the instability exponentl. Thus, the remaining probability
very strongly avoids the orbit on whichub& is located. An-
other way of expressing this result is that the total probabi
to remain in the system at long times is exponentially s
pressed if the initial state is located on an orbit which is ‘
phase’’ with the orbit on which the opening is located.

The suppression of probability density given by Eq.~27!
is of course a pure quantum interference phenomenon; it
no analog in the classical dynamics of open systems. I
also fundamentally a long-time effect as there is in gene
no short path leading fromua& to ub& which could give rise to
such intensity correlations. However, despite being intrin
cally long-time and quantum, the phenomenon can be un
stood only in terms of theshort-time, classicaldynamics
near each of the two unstable periodic orbits. This dem
strates once again the power of semiclassical technique
understanding long-time quantum behavior.

In the opposite extreme case, where the two orbits are
of phase exactly byp@Slin

b (E)5Slin
a (E1p)#, the ratio in Eq.

~27! is dominated by the region of the envelope whereSlin
b is

maximized andSlin
a minimized.~This is an energy region in

which the wave functions tend to be scarred nearub& and
antiscarred nearua&.! The relative intensity enhancement
ub& then scales with the height of the peak inSlin

b , i.e., as
l21@1. So a large enhancement of the remaining proba
ity is found on orbits out of phase with the one on which t
opening is located.

We need to consider also the case where statesua& and
ub& are found on the same orbit~the same reasoning applie
if ua& and ub& are on distinct orbits that are related by
symmetry transformation!. This corresponds to measurin
the remaining probability along the orbit on which the lead
located~or alternatively to launching the initial probabilit
along this orbit!. First, consider the case whereua& and ub&
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are exactly related by time evolution in the closed syste
Then the two local densities of states are identical, i
u^auCn&u25u^buCn&u2 for eachn. It is easy to see from Eq
~25! thatPrem in this case decays at long times as 1/t2 instead
of the usual 1/t behavior. This is easy to understand int
itively: the very long-lived resonances which survive at lo
times have very little amplitude atub&. More generally, let us
considerua& and ub& lying on the same orbit but not exac
time-iterates of one another. This is possible even ifua& and
ub& are both optimal@in the sense of havingQ50, see Eq.
~11!#. Thus, the iterates ofua& may have widths0eln along
the unstable manifold as they pass through that point on
orbit on whichub& is centered@31#. If we choose a width for
ub& which does not correspond to any integern, then ub& is
not any exact time iterate ofua&. However, for some timet
we may still write

ub&5aua~ t !&1guc&, ~28!

whereuau21ugu251. Then the local density of states atub&
separates naturally into two parts: one of weightuau2 which
is exactly equal to the density of states at the openingua&,
and another of weight 12uau2 which is statistically indepen
dent of the former but has the same linear energy envel
The first, as we just saw, gives a contribution toPrem

b which
scales as 1/t2 and thus can be ignored at long times. T
second behaves just as ifub& were located on a different orb
having the same linear envelope. Thus forua& andub& on the
same orbit we obtain the same exponential suppression
tor as before@Eq. ~27!#, times the extra suppression fact
12uau2. This latter factor also becomes very small for sm
l @31#, as any wave packet optimally placed on a perio
orbit comes ever closer to being an exact time iterate of
other such wave packet on the same orbit.

We note again that this effect is purely quantum mecha
cal, based though it is on short-time semiclassical analy
Classically, only a tiny fraction of the probability distributio
corresponding toub& would leak out through the hole atua&
before the density escapes from the periodic orbit and p
ceeds to distribute itself evenly over the entire access
phase space.

IV. NUMERICAL TESTS

A. The model

We now proceed to test numerically the various resu
obtained analytically in the previous section. What is
quired is a large ensemble of chaotic systems with each
alization having a short unstable periodic orbit of the sa
instability exponent. For this purpose we consider kick
maps on the toroidal phase space (q,p)P@21/2,1/2#3
@21/2,1/2#. The classical dynamics for one time step
given by

p→ p̃5p1mq2V8~q! mod 1,
~29!

q→q̃5q1np̃1T8~ p̃! mod 1.

This dynamics can be obtained from the stroboscopic
cretization of a kicked system@32# with a kick potential
2 1

2 mq21V(q) applied once every time step and a free ev
.
.,

e
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lution governed by the kinetic term1
2 np21T(p). m and n

are arbitrary integers, whileV,T are periodic functions of
position and momentum, respectively. The system can
be thought of as a perturbation of the linear system~cat map!
@33#

p→ p̃5p1mq mod 1,
~30!

q→q̃5np1~mn11!q mod 1.

For given positive integersm,n, we choose the functionsV
and T such thatm2V9(q).0 for all q and similarly n

1T9( p̃).0 for all p̃. Then the system is strictly chaotic an
looks everywhere locally similar to an inverted harmon
oscillator.

The quantization of such systems is well-studied in
literature @32#. \ must be chosen such thatN51/2p\, the
number ofh-sized cells in the classical phase space, is
integer (N must be even to preserve the periodicity of t
quadratic terms in the potential and kinetic energy!. For dou-
bly periodic boundary conditions, the quantu
N-dimensional Hilbert space is spanned by the position b
uqi&, whereqi5 i /N and i 50, . . . ,N21. The momentum-
space basis is given similarly byupj&, wherepj5 j /N and j
50, . . . ,N21; and the two bases are related by a discr
Fourier transform. The quantum dynamics is then given b
unitary N3N matrix

U5expF2 i S 1

2
np̂21T~ p̂! D Y \G

3expF i S 1

2
mq̂22V~ q̂! D Y \G . ~31!

Each factor is evaluated in the appropriate basis, and an
plicit forward and backward Fourier transform has been p
formed.

We may now perturb this unitary dynamics to allow for
small decay rate in channela:

W5S 12
G

2
ua&^au DU. ~32!

Equation~32! is of course the discrete-time version of th
continuous-time dynamics given in Eq. 2 above. Since
are working in the regimeG!1, where the decay rate pe
time step is small, the discretization of the decay process
not affect the long-time behavior of the system. The dec
channelua& can in principle represent any vector in the H
bert space; however, for the decay to correspond to a cla
cal escape route,ua& should be a phase-space localized sta
such as a position or momentum state. We will find it co
venient to letua& be a circular phase-space Gaussian in
coordinatesq,p.

We now need to construct an ensemble of such syste
all having the same behavior in the vicinity of a short u
stable periodic orbit. For this purpose, we setm5n51, and
let the potentialV and kinetic termT be odd functions of
their respective arguments
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V~q!5(
r 51

3

@Krsin~2prq !22pKrrq#, ~33!

T~p!5(
r 51

3

@Kr8sin~2prp !22pKr8rp#. ~34!

It is easy to see that the equations of motion@Eq. ~29!#
then have a fixed point at the origin with Jacobian matrix

J5F1 1

1 2G
@the system can be thought of as a perturbation of the

F1 1

1 2G
cat map, with perturbation vanishing near (q,p)5(0,0)].

The instability exponent is given byl5cosh21(1
2TrJ)

50.96. We may now choose each of the coefficientsKr , Kr8
from a uniform distribution over the interval
@20.3/(2pr )2,0.3/(2pr )2#. One easily sees that each sy
tem in this ensemble satisfies everywhere the conditio
2V9.0, 11T9.0 mentioned above, which is sufficient t
ensure hard chaos.

B. Probability to remain

The ensemble-averaged probability to remain in the s
tem aftert time steps is now computed for various positio
of the exit channelua&. For simplicity, we chooseua& to be a
circular phase-space Gaussian

a~q!;e2(q2q0)2/2\1 ip0(q2q0)/\ ~35!

centered on (q0 ,p0) and having widthA\ in both theq and
p directions. Because the JacobianJ at the fixed point (0,0)
is symmetric~and the stable and unstable directions are t
locally orthogonal!, such a wave packet, when centered
(0,0), is optimal in the sense of having the slowly decay
short-time autocorrelation function of Eq.~10!. „A more gen-
eral Gaussian wave packet~including position or momentum
states as extreme limits! centered on the periodic orbit ma
have a nonzero parameterQ @see Eq.~11!#, leading to a less
sharp linear spectral envelope and less strong scarring
antiscarring effects. The qualitative behavior would, ho
ever, remain unchanged.…

In Fig. 2, the probability to remain in the system as
function of the scaled timet85Gclt is first plotted ~using
plusses! for a generic leak location. The data was collect
for systems of sizeN5120 and decay parameterG50.1. The
results agree well with the the RMT predictionPrem(t8)
51/(11t8) ~dashed curve!. For comparison, the classica
probability to remain, exp(2t8), is plotted as a dotted curve
Next, we place the opening on the periodic orbit at the ori
of phase space, and obtain the rather different behavior,
an enhanced long-time tail~squares!. The asymptotic form is
well reproduced by the scar theory predictionPrem(t8)
'^Slin

21&/t8, which is shown in Fig. 2 as a solid line. For th
instability exponentl50.96, we observe a long-time prob
-
1

s-

s
t
g

nd
-

d

n
ith

ability enhancement factor̂Slin
21&511.04. Of course, bigge

enhancement factors can be observed for less unstable o
as we will see below.

First, we examine more carefully the probability to r
main at long times as a function of the position of the lea
In Fig. 3~a! is plotted the total probability to remain in th
system at timet8523103, for various locations of the open
ing ~all for N530). These possible locations are located o
40340 grid filling the middle 1/9 th section of the tota
phase space„i.e., (q,p)P@21/6,1/6#3@21/6,1/6#…. The
bright spot at the center of the figure represents the enha
probability to remain if the opening is located exactly on t
periodic orbit. As we see from the figure, the antiscarri
effect falls off quite quickly as the opening is moved aw
from the periodic orbit@in fact, the size of the bright spo
scales as\; see Eq.~23! and discussion following#. In Fig.
3~b! is plotted the theoretical quantitŷSlin

21&, as computed
using the linearized equations of motion@Eq. ~30!# around
the periodic orbit. This is observed to be in good agreem
with the data. Of course the linearized equations of mot
only hold near the periodic orbit itself, and do not correc
describe classical motion in other regions of phase sp
However, in our case the short periodic orbit at the orig
clearly dominates the data. If the classical system contai
several not very unstable orbits~see next subsection for a
example!, several bright spots would appear in the plot, a
each could then be well reproduced using the linearized c
sical dynamics around the appropriate orbit.

An important feature to notice in Fig. 3 is thatPrem(t) at
long times depends not only on the distance of the lead fr
the periodic orbit but also on the direction. Greater enhan
ment is observed if the lead is placed along either the sta
or the unstable manifold of the orbit~the two ‘‘diagonals’’ of
the would-be ‘‘square’’!.

We now consider how the probability to remain at lon
times depends on the instability exponentl of the orbit on

FIG. 2. The probability to remain in the open quantum system
plotted as a function of scaled timet85Gclt. The classical predic-
tion exp(2t8) is shown as a dotted curve. The quantum probabi
to remain for a generic lead location~pluses! compares well with
the RMT prediction 1/(11t8) ~dashed curve!. For a lead placed on
a short periodic orbit with instability exponentl50.96, we obtain
the enhanced long-time probability to remain~squares!, which
agrees with the scar theory prediction^Slin

21&/t8 ~solid line!. The
system size used for obtaining the data isN5120 and the decay rate
per step in the exit channel isG50.1.
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which the lead is located. As we discussed in the previ
section, asl gets small, resonances exponentially narrow
l should appear at the antiscarring energies, and the
probability to remain at long times is enhanced by a fac
exponentially large inl @Eq. ~21!#. To see this effect, we
modify the classical dynamics of Eq.~29! by adding an ad-
ditional term to the potential and kinetic functions:

V~q!5•••2
D

~2p!2cos~2pq!,

FIG. 3. The remaining probability density after timet852
31023, as a function of the position of the lead. In~a!, the numeri-
cal data is presented for an ensemble of systems of sizeN530; in
~b! we show the theoretical prediction̂Slin

21&/t8. At the center of
each plot is an unstable periodic orbit of exponentl50.96: for a
lead placed at that position~white spot! the probability at long times
is enhanced by a factor of 11 over the same probability for a gen
lead position~black background!. Notice the anisotropy: more en
hancement at long times is predicted~and observed! when the dis-
placement of the lead away from the periodic orbit is along one
the invariant manifolds.
s
n
tal
r

T~p!5•••1
D

~2p!2cos~2pp!. ~36!

The same value ofD should be used in the potential an
kinetic terms to preserve the symmetry of the Jacobian.
Jacobian matrix of the dynamics near the periodic orbit
(0,0) is then given by

F 1 12D

12D 11~12D!2G . ~37!

For positiveD, the trace of the Jacobian decreases and
orbit becomes less unstable. UsingD50.0, 0.1, 0.2, 0.3, and
0.4, we obtain exponents 0.96, 0.87, 0.78, 0.68, and 0
respectively.

In Fig. 4 the long-time enhancement factor ofPrem(t)
over its RMT value is plotted as a function of the expone
l, using plusses forN5120 and squares forN5240. The
theoretical prediction̂Slin

21& is shown as a solid curve. Th
data consistently falls below the theoretical prediction, w
the disagreement becoming more pronounced at the sm
values ofl. The reason is primarily a finite-size effect: th
analytical calculations are all carried out under the assu
tion that the mean level spacing is much smaller than
scale over which the linear energy envelope changes sig
cantly. Then the linear envelope is roughly constant on
scale at which individual resonances emerge, and their
havior can be treated statistically. Thus, the discrepancy
comes more noticeable asl→0 for fixedN, as the structures
in Slin become more comparable to the mean level spac
Indeed, we see that theN5240 data is consistently close
than theN5120 data to the theory, which strictly applie
only in the semiclassicalN→` limit.

We observe the exponential increase in the enhancem
factor asl decreases; indeed the very moderate exponenl
50.59 produces an enhancement factor of well over 100

ic

f

FIG. 4. The long-time enhancement factor of the probability
remain in a system when the lead is placed on a periodic orb
plotted as a function of the instability exponent of the orbit. Da
are shown forN5120 ~pluses! and N5240 ~squares!. The N→`
theoretical prediction̂Slin

21& is shown as a solid curve. We see th
exponential increase in the probability to remain as the exponel
decreases@the l→0 asymptotic form is given in Eq.~21!#.
For large l, the enhancement factor converges to 1, the RM
prediction.
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the long-time probability to remain.l50.1 would in theory
produce an average long-time enhancement of 1.231013,
provided we were able to go to a large enough system, w
for a long enough time, and collect enough statistics to
serve it @from Eq. ~15! we see that the asymptotic 1/Slint8
form holds only fort8@Slin

21#.

C. Phase space distribution of long-time probability density

We now consider predictions concerning the enhancem
or suppression of the long-time probability near orbitsother
than the one on which the lead is located~see discussion in
Sec. III B!. To test these predictions we need an ensembl
systems all having two periodic orbits in common, and
ability to vary the action phase difference between them
our example the two orbits have the same local dynamic
their respective neighborhoods, though this of course is
necessary to produce the desired effect.

We work on the phase space (q,p)P@21/4,3/4#
3@21/2,1/2#, setm5n52 in the equations of motion@Eq.
~29!#, and impose the constraintK1523K3 on the kick po-
tential @see Eq.~33!#. This condition ensures the presence
a fixed point at (1/2,0) in addition to the usual one at~0,0!
on which we have been focusing so far. The linearized
namics around each orbit is given by the Jacobian

J5F1 2

2 5G ,
and the exponent per period isl51.76. Other orbits are o
course present, but they change with the coefficientsKr , Kr8 ,
and so their effects are expected to cancel out in the pro
of ensemble averaging. In order for the two orbits not to
related by a symmetry transformation we only need all
Kr to be nonvanishing.

Our analysis showed that the behavior of the remain
probability density at long times should depend strongly
the relative action phase difference between the two orb
This phase difference can be easily controlled by adjus
K2(fb2fa5NK2/4). Fixing K2 at a nonzero value which
producesfb2fa50(mod 2p), we are free to varyK3 and
the three coefficientsKr8 consistent with the constraints
2V9.0 and 21T9.0 ~which are sufficient to ensure har
chaos!. We obtain then, forN580 andG50.1, the results
shown in Fig. 5~a!. Clearly the remaining probability is ver
strongly suppressed on the orbit on the left, where the lea
located~as we saw in the previous section, the probability
remain exactly on the orbit falls off faster with time than
probability elsewhere, so the numerical value of the relat
suppression there will be time dependent!. We also see mild
density suppression on the two orthogonal invariant ma
folds of this orbit. The phenomenon we want to focus o
though, is the suppression we observe on the orbit on
right side of Fig. 5~a!. The observed suppression factor rig
on the periodic orbit at (1/2,0) is 0.37, compared with t
predicted value 0.45; again the discrepancy may possibl
attributed to finite size effects. As expected, we also obse
probability suppression along the manifolds of this seco
orbit.

We now consider the opposite case, where the two or
are exactly out of phase@fb2fa5p(mod 2p)#. Adjusting
it
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K2 appropriately, we again perform ensemble averaging o
the other parameters and obtain the results in Fig. 5~b!. The
same suppression is still seen along the orbit containing
lead and its invariant manifolds. However, we now see,
expected, anenhancementof the remaining probability den
sity near the orbit on the right. The enhancement factor
that orbit itself is 1.78; the theoretical prediction is 1.67.

The predicted relative intensity at the orbit (1/2,0)@Eq.
~27!# given a lead at (0,0) is plotted in Fig. 6 as a function
the action phase difference between the two orbits.~One
could imagine obtaining such a plot in a physical system
tuning a weak magnetic field which had little effect on t
classical dynamics but did change the relative phase betw
two orbits enclosing different amounts of flux. Alternativel
if the periods of the two orbits differed, the orbits could b
observed to go in and out of phase with one another as
changed the energy range in which the resonances w
populated.! The suppression and enhancement factors in
case never get very far from unity, due to the relatively lar

FIG. 5. The remaining probability distribution at very lon
times is shown for an ensemble of systems~of size N580) all
having two short periodic orbits in common, each with instabil
exponentl51.76. In both cases, the lead is centered on the p
odic orbit on the left side of the plot. The remaining probability
strongly suppressed on that orbit and less so on its invariant m
folds. The action of the orbit on the right is chosen to be in ph
with the first one in case~a!, so that probability there is also sup
pressed, and exactly out of phase with it in case~b!, leading to an
enhancement of the probability density on the second orbit and
invariant manifolds. See next figure for quantitative comparis
with the theory.
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value of the instability exponentl chosen for our example
Values obtained numerically, as described in the preced
paragraphs, are given for comparison with scar theory, al
with statistical error bars. The dashed line at 1 represents
RMT prediction.

V. CONCLUSION

We have concentrated throughout on leakage throug
single decay channel which is very well localized in pha
space~leak area much less thanh). One would like to un-
derstand more generally possible scar effects for multich
nel leads as well as for leads wide enough to produce o
lapping resonances. A detailed treatment of such effect
outside the scope of the present work. However, one poss
extension turns out to be relatively straightforward, and
results suggest that the most interesting scar effects ar
ready captured in the single channel analysis. Specifica
considerM decay channels, each with a slow decay rate
in Eq. ~6!. If the sum of these classical rates is small co
pared to the quantum level spacing, the resulting resona
will be nonoverlapping, and a perturbative approach to
problem is valid. In RMT, the probability to remain at lon
times is given by a product of factors associated with eac
the leads@Eq. ~8!#. In the case where one of the channe
happens to be close to a short periodic orbit, the inten
distribution giving rise to this one factor only will be a
fected, producing the same overall enhancement fa
^Slin

21& obtained previously. The total probabilityPrem now
falls off much more quickly with time than in the single
channel case, reflecting the fact that it is much harder to
a resonance which is slowly decaying throughall of the
channels. However, the essential observation of an enha
probability of finding very narrow resonances survive
Clearly the analysis is more complicated for correlated de
channels, and for the case of larger total decay rates w
the resonances become overlapping. Still, periodic orbits

FIG. 6. The predicted relative intensity at long times on a pe
odic orbit other than the one containing the lead is plotted a
function of the relative phase between the two orbits~solid curve!.
For reference, the phase-space averaged intensity is plotted
dashed line. Intensity suppression is predicted and observed w
the orbits are in phase, and enhancement is seen when the orb
exactly out of phase@compare~a! and ~b! in previous figure#. The
data are collected for an ensemble of systems withN580, and each
orbit has instability exponentl51.76.
g
g

he

a
e

n-
r-
is
le
e
al-
y,
s
-
es
e

of

ty

or

d

ed
.
y
re
y

their very nature produce quantum effects in phase sp
regions of size\ surrounding the orbit; thus our intuition
tells us that no fundamentally new scar effects are expe
in most cases for multichannel leads.

We have seen that an analysis of short time classical
tion in a chaotic system can shed much light on quant
behavior on the scale of the decay time, which is much lar
than the Heisenberg time and every other time scale in
system. This is somewhat counterintuitive, as the narr
resonance regime is by its very nature nonclassical an
associated with the very long-time behavior of the syste
Even though in some cases~e.g., in the presence of stron
diffraction or caustics! semiclassical methods may not b
sufficient to predict the properties of individual high-ener
quantum chaotic wave functions, they are still very power
for making statistical predictions of the sort described in t
paper. We note that a small change in the system poten
or the presence of a few impurity scatterers may comple
change the character of individual resonances in an o
system, making comparison with exact semiclassical w
functions futile. On the other hand, the scar theory pred
tions, which concern statistical properties such as the dis
bution of resonance widths, are robust to such changes in
details of the system, as long as the dynamics of the first
bounces is known. In a situation where the classical dyna
ics of the quantum system under study is not known relia
even for short times, one could use methods similar to th
described here to search for the short unstable periodic
bits. This can be done by moving the position of the lead,
more practically in many situations, by adjusting some s
tem parameter which changes the classical dynamics of
system. For a given classical system and lead position,
then sweeps through a weak magnetic field or some o
parameter not affecting the classical dynamics, and sear
for a large fraction of very narrow resonances, occurr
periodically in the magnetic field strength.

Clearly the ideas described here can also be extende
study two-lead systems, where properties such as con
tance peak height distributions can be analyzed. In anal
with the present work, the results will strongly depend
whether one or both of the leads is located on a short
stable classical orbit. Where the leads are found on two
ferent short periodic orbits, the phase difference betw
them can be varied to produce an enhancement or supp
sion of the average conductance, as suggested by the re
of the present work. Even stronger effects can be observe
the leads are located on the same periodic orbit, or if the
orbits are related to each other by a symmetry of the syst
These issues and other related questions are addressed
in a forthcoming paper@27#. Certainly much more work
needs to be done generally in understanding classical dyn
ics effects on the quantum properties of open chaotic s
tems.
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