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Scar and antiscar quantum effects in open chaotic systems
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We predict and numerically observe strong periodic orbit effects in the properties of weakly open quantum
systems with a chaotic classical limit. Antiscars lead to a large number of exponentially narrow isolated
resonances when the single-chanfml tunneling opening is located on a short unstable orbit of the closed
system; the probability to remain in the system at long times is thus exponentially enhanced over the random
matrix theory prediction. The distribution of resonance widths and the probability to remain are quantitatively
given in terms of only the stability matrix of the orbit on which the opening is placed. The long-time remaining
probability density is nontrivially distributed over the available phase space; it can be enhanced or suppressed
near orbits other than the one on which the lead is located, depending on the periods and classical actions of
these other orbits. These effects of the short periodic orbits on quantum decay rates have no classical coun-
terpart, and first appear on times scales much larger than the Heisenberg time of the system. All the predictions
are guantitatively compared with numerical dd%®1063-651X99)12805-9

PACS numbeps): 05.45-a, 03.65.Sq

[. INTRODUCTION semiclassical limit. A homoclinic orbit analysis showed that
long-time return amplitude to the vicinity of a periodic orbit
bore the imprint of the short-time linearized classical dynam-
Wave-function scarring, the enhancement or suppressiogs around the periodic orbit. This leads to a natural separa-
of quantum eigenstate intensity along an unstable orbit of th@on of scarring intensity into a classical short-time compo-
corresponding classical system, is a fascinating and genefigent and a random long-time component, as suggested
property of quantum chaotic behavior. Along with dynamical already in Ref[11].
localization, it is one of the striking ways in which a quan- | Ref.[12], predictions were made about the distribution
tum system can show deviation from ergodicity at the singlegf wave-function intensities on a periodic orbit and at a ge-
channel level even though the classical dynamics is comneric point in phase space. The full distribution of intensities,
pletely ergodic. Wave-function intensities near a shoryhich includes samples taken over all of phase space, has a
unstgble periodic orbit fo.IIow a distributi_on far from that long tail (compared to the Porter-Thomas prediction of
predicted by random matrix theofRMT), with some wave-  pMT), dominated by the effect of the least unstable periodic
functions having much more intensity and other much 1esg, it The functional form of this tail is given in the semi-
than would be predicted based on Gaussian random fluctuy,ggjca|(high-energy limit very simply in terms of the sta-
tions. The_ phenom_enon Is at f'.rSt glance paradoxu:a!, becau erlity exponent of this least unstable orbit, as long as an
the long-time(and indeed stationahyjuantum behavior re- optimally oriented test basis is chosen. Furthermore, upon

tains a memory of the short-time classical motion, a MEeMONg hsemble averaging a power-law intensity distribution tail is

tof}aat Ish(;%rgfIstilt)éribsse:;rlr?ntheh;osnget;mgbésbsslg?\gﬁngr'(e:fimeol_)tained, in sharp contrast with the exponential tail predicted
y X g P By RMT. This result is also to be contrasted with the log-

tally in a wide variety of systems, including microwave cavi- normal intensity distribution tail which obtains in diffusive

g(t_:‘oSnEli’nZ]é Sﬁ;ﬁgggzg(&z g]tructure[ﬁ], and the hydrogen systems[13,14]. Thus, although RMT is accepted as the
A theor o?scarrin be{se'd on the linearized evolution Ofzeroth—order approximation for both chaotic and disordered
y 9 gquantum systemé§.e., it is the dynamics-free baseline with

B B o o g W e 3stem properes ae 1o becompaitons
Berry[8] in Wigner phase space followed. These made prefrom RMT pred|_ct_|ons can be qualitatively different in the
. . X : ; " “two cases, providing an impetus for the present research.
dictions about the average intensity on a classical periodic
orbit of states in a given energy band; however, because of
the energy smoothing involved, no predictions were possible
about the statistical properties of individual peak heights in  The numerically tested quantitative predictions in Refs.
the local density of states. Subsequently, Agam and Fishmgn0,12 concerned the local densities of states in a closed
[9] developed the idea of detecting and quantifying scars bgystem. Certain properties of open systems, such as reso-
integrating wave-function intensity over tubes in phase spacaance widths and conductances, may, however, be more
surrounding the periodic orbit. More recently a nonlinearamenable to experimental verificatiph5]. Much important
theory was developeld 0] which made it possible to predict theoretical work has been done on the problem of quantum
the statistical properties of individual wave functions, in thechaotic scattering, mostly in the regime of a large number of
open incoming and outgoing channels. This is a very natural
limit to take, for example, in billiardhard wal) systems
*Electronic address: kaplan@physics.harvard.edu with a fixed geometry, where the number of open channels

A. Wave-function scarring

B. Chaotic scattering
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becomes large as the wavelength decreases. In this subsé@rg from short trajectories through the device, i.e., those tra-
tion we discuss a few of the established results in the scajectories which are short compared to the classical mixing
tering literature. We begin by mentioning particularly the time of the system. The universal regime is expected to hold

important early work of Gaspard and Rice, who studied thevhen the typical trajectory is trapped for many bountes

classical, semiclassical, and quantum problem of a point paffat @ statistical analysis of the transport is valshd yet is

: : ; - _ short compared to the Heisenberg tirte that the reso-
ticle scattermg off three hard disks in a pldrié]. The meta nances are wide and many of them overlap at any given
stable classical states there were observed to be fractal al ergy. Of course, in the semiclassical limit of high energy
chaotic, with chaogas measured by the rate of KS entropy . ,

) TERES 1= . large system size, it is easy to satisfy simultaneously these
increase per unit timeinhibiting the rate of classical escape o conditions.

from the system. Interestingly, some of the quantum scatter- Jung and Se“gma[QZ] have ana|yzed Carefu”y the im-
ing resonances have lifetimes significantly longer than thaportant distinction that must be made between chaos in a
of the longest-lived classical resonance. This enhancement éfamiltonian flow and chaos in the resulting classical scatter-
certain quantum lifetimes can be understood semiclassicalling map. They have given several examples of chaotic scat-
as an interference effect, and indeed a semiclassical upptsring maps arising from integrable dynamics without topo-
bound on possible quantum lifetimes was obtained using #ogical chaos, and have studied the quantum mechanics of
symbolic code for the classical dynamics. these unusual systems. The authors found that eigenphase
The three-disk model was also used by Eckh@tdf in  statistics of the quantur® matrix depend primarily on the
his analysis of the spectral form factor and its relation tochaoticity of the scattering map, whereas basis-dependent
delay times in an open system. In analogy with closed sysguantities such as the distribution of matrix elements tend to
tem behavior, the short-time quantum dynamics was found téollow RMT behavior only in the presence of topological
be nonuniversal and governed by a few isolated unstablehaos.
periodic orbits. At longer times, statistical interference be- Finally, we mention the work of Borgonovi, Guarneri,
tween many classical trajectories takes over, and a classicRlebuzzini, and Shepelyansk23], who have studied quan-
escape law holds. Finally, at very long times, lifetimes oftum transport fluctuations in the context of kicked chaotic
individual narrow quantum resonances dominate the rate ahaps, and specifically in modified versions of the quantum
decay [In the present work, transmission through very smallkicked rotor. They have again observed Ericson-like trans-
openings is considered, so the resonances are always isolat@ission fluctuations; the transmission probability is self-
and the bulk of the decay necessarily takes place in this longorrelated on an energy scale related to the inverse time that
time individual-resonance reginjéVe also note that in ear- the particle spends in the interaction region. In the diffusive
lier work, Cvitanovic and Eckhardf18] showed that the regime, the amplitude of the UCF's(2/15) was found to be
guantum resonances of a three-disk system can be accuratétygood agreement with RMT expectations. The statistics of
computed semiclassically, using cycle expansions which exS matrix fluctuations were also numerically investigated, in
press the effects of long periodic orbits in terms of a fewvarious transport regimes. For ballistic transport, the fluctu-
short classical trajectories. ating part of theS matrix agrees well with a Gaussian ran-
Blumel and Smilansky19] studied carefully the effect of dom model, but systematic deviations from RMT were ob-
irregular classical scattering on the quantum scattering maserved once transport through the device became diffusive.
trix and its energy correlations, in the same limit of manyIn the diffusive (ohmic) regime, S matrix correlations also
open channel§.e., strongly overlapping resonangeSemi-  begin to deviate from a Lorentzian shape. Finally, in the
classical arguments were used to show that fluctuations withuasi-one-dimensional localized regime, the distribution of
energy of theS matrix and cross section should be consistentransmission rates becomes log-normal, consistent with the
with Ericson fluctuations, previously observed in the contexfprediction for an Anderson insulator.
of nuclear scattering. Ericson fluctuations are a direct conse- The literature we have been discussing focuses almost
guence of RMT, and such fluctuations were indeed measureskclusively on the regime of large classical openings, with
numerically, inside energy rangéscaling asi ~ ') where the  many open channels and a strongly overlapping resonance
statistical semiclassical arguments are expected to work. structure. In that context, deviations from RMT that arise in
Doron, Smilansky, and Frenkg20] studied chaotic scat- the presence of disorder have also been consid@4id In
tering with application to electronic transport through meso-the present work, we focus on the opposite limit of small
scopic devices as well as to the transmission of microwavespenings in a classically chaotic system, where the reso-
through junctions. Fluctuations in the transmission coeffi-nances are isolated and have a one-to-one correspondence
cient were again shown to be consistent with RMT predic-with the eigenstates of a closed system. The isolated reso-
tions, and the dependence of transmission correlations omance regime appears in the presence of leads narrow com-
external parameters was examined. Connections were magared to a wavelength, and more generally when tunneling is
with the time domain behavior of chaotic systems, and thehe source of coupling of a chaotic system to the outside
effect of absorption was discussed. Jalabert, Baranger, andorld. [Numerical calculations are now in progress for a
Stone[21] showed that ballistic chaotic conductors display simple model where metastable states decay through tunnel-
universal conductance fluctuatiof9CF’s), the magnitude ing out of a smooth potential we]lMuch work has been
of the fluctuations being of order one channel and independone to analyze narrow openings within the context of RMT
dent of the total number of channels transmitted. The){25]. Here we addres§going beyond the naive RMT ap-
pointed out that theséRMT-predicted fluctuations arise proximation the distribution of decay lifetimes in a leaky
from interference, and are not obtainable for a class&al chaotic system, and the probability to remain in such a sys-
matrix. The authors also noticed nonuniversal behavior arisem [26] as a function of time and the location of the
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“leak” (open channegl The distribution in phase space of leak. Also, density is constantly redistributing itself, so that
the remaining probability density at long times is consideredthe remaining probability density remains evenly distributed
as well as the dependence of the probability to remain omn the scale of our mesh, except in a corridor of length

where the particle was first “injected” into the system. scaling as I leading forward in time from the position of
These last two questions bring us into contact with wavethe opening. Notice that the width of the corridor where the
function correlations and transport in chaotic systems, Whicrprobab”ity to remain is suppressed scales as the size of the
(as we showcan be very different from RMT expectations gpening. Thus, this corridor has no effect on the quantum
where periodic orbits are involved. All the quantitative pre- pehavior when the opening is small compared tdFinally,
dictions which follow are tested numerically. A study of con- even if the initial probability is not evenly distributed over
ductance properties in two-lead chaotic systems, includinghe entire phase space, the long-time behavior is unaffected
mean conductance, conductance fluctuations, distribution qgs long as the bulk of the probability is not initially placed

peak heights, and peak correlatiofasd how all these de- in a corridor similar to the one described above, but leading
pend on the placement of one or both leads in relation to thgackwardsin time from the opening

classical orbitsis forthcoming[27]. In contrast to these results, we will find in the quantum
case that the probability to remain in the system at long times
Il. CLASSICAL AND QUANTUM WEAKLY OPEN depends strongly on whether the opening is located on a
CHAOTIC SYSTEMS classical (unstable periodic orbit, even though the initial

probability density is evenly distributed. Again, we see that
long-time quantum behavior retains a better memory of
We begin by considering a small opening in a classicallyshort-time classical dynamics than does the long-time classi-
chaotic system, which allows a particle to escape from theal behavior. Also, we will see that given a leak placed on a
system. We will often use language suggesting that th@eriodic orbit, the remaining probability distribution at long
“opening” is defined in position space, as it would often be, times can be strongly affected not just on the periodic orbit
for example, in a mesoscopic experiment. However, the foritself, but also on thether short periodic orbits of the sys-
malism considered here is much more general: all that isem. Enhancement or suppression can be observed depend-
required is that the opening be localized in the classicaing on the energy range considered and on the classical ac-
phase spaceescape routes that are defined exclusively intions of the orbits in question. Similarly, the probability to
terms of position or momentum are special cases of this. Aemain at long times will be affected if the original probabil-
simple example of a momentum space opening is a potentialy is injected on an unstable periodic orbit different from the
barrier that allows particles to leave only if their momentumone where the opening is located. All this is true even though
is directed almost normal to the w4R8]. An opening hav- the decay is taking place on a time scale much longer than
ing the shape of a phase-space Gaussian naturally occusdy other time scale in the problefthe period of the short
when one considers tunneling out of a metastable chaotigrbit, the mixing time, and also the Heisenberg time, #e.,

well formed by a continuous potentig29]. over the mean level spacing
Now we can imagine forming a mesh in classical phase

space with each cell the size of the opening; because the

classical dynamicgin the closed systejmis chaotic, prob- B. Quantum mechanics and RMT
ability density starting in one such cell will soon be evenly
distributed over all the available cells. The time for this to
happen is logarithmic in the size of the opening

A. Classical behavior

Let the quantization of our classical system be given by
an N-dimensional Hilbert space\ is the number of Planck-
sized cells in the classical phase spawéth dynamics in the

linw| closed system given by the Hamiltoniklg. If the opening is
Ty~ — (1 very small (less than one open channel_, so that the_reso-
nances are nonoverlappingwe can write an effective
Hamiltonian for the open system

Here\ is the Lyapunov exponent of the classical dynamics
(the mean rate of chaotic divergence of classical oxbésd

the total size of phase space, in terms of whicimust be
measured, has been set to unity. On the other hand, the es-
cape time from the system is inversely proportional to thewhere|a) is a quantum channel associated with the opening,
leak sizew, so a small value ofv will cause complete mixing andT is the decay rate in that chanrghken to be small

of the remaining probability to take place on a time scalgla) could be a Gaussian wavepacket enclosing the hole, or a
much shorter than the scale on which probability is leakingposition or momentum state. It is important to note here that
out. One obvious consequence is that the probability to rethe opening is small compared #o(less than half a wave-
main in the open classical system follows an exponentialength if in position spade One can of course consider the
law. [Exponential classical decay depends on the chaotieffects of scarring on larger openings, or ones which are not
(strongly mixing nature of the classical system: in such sys-thus localized to a single channel; these possibilities are con-
tems the Frobenius-Perron operator hasistated eigen-  sidered towards the end of the present paper. We emphasize,
value at 1. Nonexponential decay laws may obtain in intehowever, that the phenomenon discussed here is already
grable systems, even for an infinitesimal openjnghis  present in its full form for the tiniest single opening, without
behavior is, of course, independent of the position of thehe complications that arise in the more general case.

T
H=Hoi5la)(al, @
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For a small hole, the main effect of the opening on a waveribution of delay times for scattering off of the system in
function|¥,)) of the closed system is that it acquires a decayquestion: there one must include the probability of populat-
width proportional to the intensity of the wave function at ing a given resonance in the first place, which of course is

the opening:
Lo=TK¥,|a)f. 3

If the intensitiesx,=N|(¥ ,|a)|? follow a chi-squared distri-
bution, as in RMT, we have probability P(x)
= (1/y2mx)exp(—x/2) for real overlapg¥,|a), and P(x)

=exp(—Xx) for complex overlaps. Consider the complex case.
Because mixing between the states of the closed system can

be neglected in the small regime, the total probability to

remain in the system is given by a sum over these states

1 N—-1
Prem(t): - HZO e*(xn/N)Ft

= f dxP(x)e XI'VN
0

@ 1
— —Xa—XI't/IN_
Jo dxe *e 13 TUN' (4)

(Remember thalll is the total number of states in the system;

the classical decay rate is given byy=I'/N because only
one channel has the possibility to degaye see that at

short times (< Fal), the probability to remain in the system
is Pen(t)=1-T4t, as expected, while at long times we

have the asymptotic behavior

1
Pren(t)~ F_dt 5
In the case oM independent weakly open channels, i.e.,
M-1 (i) . .
H=Ho—i 2 —-la®)(a"), (6)
i=0

the classical decay rate is given by
1 M-1
Fg=y 2 T'® )
N <o

and the RMT probability to remain is

M-1

Pt)=]1

1=0

_— 8
1+TOYyN @

Taking M— while keeping the total decay rale, con-

proportional tol',. This leads to an extra factor ofin the
denominator, giving:Pdew(t)~t*'\"*l for complex overlaps
and Pgepa(t)~t ™21 for real overlaps. In our case, we
imagine the system to be populated first, before the lead is
opened up, and thus no extra powert @ present.

Ill. EFFECT OF PERIODIC ORBITS
A. Probability to remain

We now go beyond RMT to consider the effect of real
dynamics on the quantum probability to remain in a classi-
cally chaotic system. Take the escape chafmeto be on or
near an(unstable periodic orbit of instability exponenk.
The smoothed local density of states|a} is obtained by
Fourier transforming its short-time autocorrelation function,
which is easily obtained by linearizing the classical equa-
tions of motion near the unstable orh&,10,13. Thus, for
example, if the periodic orbit in question is a fixed point of a
discrete time map, anfh) is a Gaussian wave packet opti-
mally aligned along the stable and unstable manifolds of the
orbit, then the short-time autocorrelation functign the
closed systemis given by

e—i¢t
Ain(t)=(ala(t))= Joosmt

Here — ¢ is a phase associated with one iteration of the
orbit: it is given by the classical action in units #f plus a
Maslov phase as appropriate. The subscript “lin” indicates
that the expression is obtained within the linearized classical
approximation; it is valid on time scales short compared to
the mixing timeT i~ |InA|/\.

A more general form of Eq(10) applies for a nonopti-
mally oriented wave packeée.g., a position state or momen-
tum channel could be nonoptimal depending on the direction
of the invariant manifolds at the periodic poinand also for
a channel not exactly centered on a periodic pt3d. In
particular, for a wave packet centered on the periodic orbit
but not optimally oriented with respect to its invariant mani-
folds, the form above becomes

(10)

eidt

Ain(t)=(ala(t))= (12)

Jcosht+iQsinhat

In Eq. (11), Q is a nonoptimality parameter: in a coordinate

. system where the stable and unstable manifolds are orthogo-
?ﬁal, Q is a function of the angle between the orientation of
the phase-space Gaussi@t some fixed eccentricityand
either of these two directions. Alternatively, if the wave

tion is obtained. On the other hand, fixing the number o
channelgv and takingt— <, we observe the power-law be-

havior packet|a) is fixed to have a circular shape in phase space
(N/DM (i.e., to have equal and uncorrelated uncertaintieg and
Pem)=3—7—- 9) p), Q becomes a function of the nonorthogonality between

H N0 the stable and unstable manifolds. In any case, as lortg as
i=o is not very large, the qualitative behavior is not much
changed, and although analytic results are less easy to obtain
The case of real overlagdV,|a) follows similarly: each  for nonzeroQ, quantitative predictions can be readily pro-
real random overlap counts as half of a complex one, so theruced for comparison with any experimental or numerical
Pren(t) ~t~ M2 In the literature one often considers the dis-data. The key point for our purposes here is that for a small
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g 10 ~_ T T T T T The scarred stateghose with energy close to satisfying
ST -\\ SRR //' the EBK quantization conditignhave S;,(E)>1 and thus
é 10-2 RMT N decay much faster than the antiscarred stgté§ which are
s L h far from satisfying EBK and thus hav§;,(E)<1. Let us
£ 10 A =020 | examine more closely these two distinct energy regimes.
5 0°r AN e e 7] Near the quantization enerdy= ¢, the smoothed density of
g W0 / ] statesS;;,(E) has its peak; its height scales inversely with
é 1071 |- A=015 \\\ A - for small\ [6]:
é 10-12 - \\*..,,’// }g{fé}lf]ediatfe exp(.)nential . Sin(E=)~Cc/\, (16)
g 10714 n | A | \maxu:{lum a.ntlslca.rrmg {7

0 1 9 3 4 . 6 wherec=5.24 is a numerical constafit2]. The width of this

peak inS;,(E) scales linearly witt\ for small\, and all of
the anomalously enhanced wave-function intensities come

FIG. 1. Smoothed local densities of stag&s(E) are plotted as  from this energy region, as was observed and confirmed nu-
a function of energy on a periodic orbit of instability exponant merically in Ref.[12]. In the open system, these states pro-
=0.20 (solid curve and on an orbit withh =0.15 (dashed curve  duce an excess of large resonance decay widths and decay
The mean resonance width for a lead placed on such a periodic Orq‘iéster[by a factor Ofo()\fl)] than would be predicted by
will be proportional toS;,(E). We observe the peak at the EBK pyT.
quantization energf =0 [Eq. (16)] which scales aa ", the ex- (We note that our presentation here is in the context of a
r;ounrﬁnéﬁlhze;;?E;ﬁvzigg_a:ds\;i:h[i'iqe')((;?g’eﬁggllt;:mrgn'i'n discrete-time map; thu& is a dimensionless quasienergy
N [Eq. (18)]. The RMT predictionS;;,(E) =1, which is applicable that_ takes _VaIueS In th_e |nter\_/eﬂ(_),277] ; For a re_al
away from any short periodic orbit, is plotted as a dotted line. continuous-time system with a periodic orbit of peribg, it

' is of course the quantiti Tp /% that must be compared with

the dimensionless number. Also, the smoothed density of
states will then have an infinite sequence of peaks, each cen-
tered on an energy satisfying the EBK quantization condition
[10]. The ratio of each peak width to the spacing between
_ peaks scales as. The infinite sequence of scarring peaks is
Sin(E)=2, e'E'A(1) (12 modulated by a wide envelope associated with the energy
‘ width AE of the initial wave packet: in the semiclassical

of width scaling as\ and height scaling as™* (also see Fig. limit, this width is large compared to the spacing between
1 below). peaks and small compared to the total energy. In the time

Nonlinear recurrences on time scales beyond the mixinglomain, the scal&E is associated with the finite timég
time (associated with orbits homoclinic to the original peri- ~%/AE which the wave packet takes to traverse itself under
odic orbit lead to fluctuations multiplying this spectral en- free evolution each time that its center returns to the original

velope, eventually producing a line spectrum position[10].) . _ .
Because our focus here is on the long-time behavior of

weakly open systems, we are more interested in¢beple-
S(B)= ; [(Wala)|?6(E~Ep). (13 menta{y Fs)uppr)éssion of the smoothed local density ff states
far from the resonance energy. Again, we consider the strong
The line heightsc,=N|(¥ ,|a)|? are distributed in each en- scarring regime, where<1: then the linear spectrum falls
ergy region as a chi-squared distribution with mé&yg(E)  off exponentially far away from the peak
[12]:

quasi-energy (phase)

exponenti, the autocorrelation function remains large for
the firstO(\ ~ 1) iterations of the orbit, and the local density
of states has a short-time envelope

2

1 Sin(E)~ e e (17
P(x)= meiﬂs‘i”(a. (19
" for |E— ¢|>\. Within O(\) of the optimal antiscarring en-
Thus, the distribution of decay widths can be strongly energergy, E= ¢+ , the spectrum deviates from the exponential
dependent; in particular, the probability to remain in the syslaw and smoothly approaches the value
tem at long times is now given by 4
an

- Sn(E=g+m~——e " (18
Pren{t):j dxP(x)e XI'VN
° at the minimum. The region withi®(\) of E=¢+ 7 is

1 thus responsible for producing the smallest wave-function
:m !ntensities, and the ngrrowest resonances ip the correspond-
ing open system. This excess of exponentially small decay

1 1 rates is as dramatic a signature of the underlying classical

- Sin(E) Tt (19 pehavior as the long wave-function intensity distribution tails

found in[12]. As we will observe in the next section, the
if initially only states with energy arount are populated.  antiscarring effect on the long-time behavior of open systems
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can be very striking even for moderate exponentgée.g.,  This long-time behavior is completely dominated by the

A=~1), as long as the lead is optimally placed with respect tanost antiscarred states, i.e., those with energy wi@{n )

the periodic orbit. of Emin=¢+7 [Eq. (18)]. For a nonoptimally placed lead,
Smoothed local densities of statg (E) on periodic or-  with moderate nonoptimality paramet@r[see Eq(11) and

bits of instability exponents\=0.20 (solid curve and A discussion followingwe find empirically a similar exponen-

=0.15 (dashed curveare shown graphically in Fig. 1. The tial enhancement of the long-time probability to remain

figure can be viewed as representing the average wave-

function intensity on the periodic orbit in a closed system as —1

a function of energy, or the mean resonance widthunits (Sin >_(277

of I'y) at that energy in the weakly open system. The phase

¢=0 has been chosen so as to mé&ke0 the EBK energy whereb=1.1 is a numerical constant.

at which maximum scarring occuf&€qg. (16)]. A half-log If the state|a) defining the phase-space location of the

scale is used to emphasize the exponential falloff in averagepening is centered off of the periodic orbit, but witHirof

resonance width betwedh=0 andE= = [Eq.(17)], and the  the orbit, one still has fluctuations in the linear density of

minimum near the anti-EBK energ§= 7 [Eq. (18)]. For  states and consequently an enhancement in the probability to

reference, the smoothed local density of states in RE3- remain at long times. An analytic form for the linear auto-

plicable when the lead is not in the vicinity of any short correlation function in such a case can be found in Faf].

periodic orbi} is displayed as a dotted line in the figure. ~ For a circular minimum-uncertainty phase-space opening
We now consider the energy-averaged probability to recentered a distancé away from a periodic orbit with small

main in the open system: this will be the quantity studied inexponent\, the energy-averaged vah{usﬁ’nl) scales as

detail numerically in the next section, where the model sys- ,

tem is a(nonenergy conservingliscrete-time kicked map. (S 1y~ \2e(m /2= donmN (23

(For an energy-conserving system, varying the strength of a

weak magnetic field and thus sweeping through different valwhered is yet another numerical constardt.can be a dis-

ues of the phase would produce the same respylAgain, placement along either the stable or unstable direction away

because the perturbation induced by opening up the systemfi®m the orbit. Thus, deviations from RMT behavior are ob-

small, there is little mixing among states of different energy.served in an area scaling Assurrounding the periodic orbit.

Thus the total probability to remain is obtained simply by Maximum enhancement ¢&;,) (i.e., enhancement of order

averaging the probabilities at the different gnergies. Eroq}\zew2/zx) occurs for6< O(\ &), corresponding to a phase-

Eqg. (15) we see that at short times, the classical behavior i$pace area scaling a4 surrounding the orbit. Thus, if we

recovered: consider the long-time probability to remain in the system
averaged over all possible positions of the leag obtain

2
e(wzlz— bQ)/A (22)

Prem=1—(Sin) Ft/N=1-Tt, (19
o 1+0(hN‘e™ )
as(Sin)=Aiin(0)=(ala)=1 by normalization. Thus at short Prem= o

times,t<I" ! the faster-decaying scarred states and slower- cl

decaying antiscarred states always cancel exactly and Ngpe correction to RMT is obtained by multiplying the maxi-
quantum signature of the underlying classical dynamics cap, m optainable enhancement by the size of the phase-space
be observed. On the other hand, at long times, i.e.,.tfor \eqion where such enhancement ocoursprinciple, contri-
>[Sin(Emin)'e]™ ", we obtain the very different behavior sions from all the periodic orbits need to be added, how-
1 ever, if orbits with small\ exist, they will clearly dominate
P.(1)= (Sin) (20) any such sum. The result is that at finite energy, exponen-
e | tially large (in 1/\) deviations from RMT are found even in
the phase-space averaged analysis. Inithed limit of any
HereE i, is the energy at which the smoothed spectrum hagiven classical system, the RMT behavior is recovered be-
its minimum; for an optimally placed leda) this energy is cause the chance of a lead being found on the short periodic
exactly 7 out of phase with the EBK energy, as discussed Orbit goes to zero. In Sec. IV B, we present theoretical pre-
above[Eq. 18]. (S;,.l) is the inverse of the smoothed density d|ct_|0|js and numerical datg measuring thg probability to re-
of states afa), averaged over energfor weak magnetic Mainin the system at long times as a function of the location

(29)

field). of the opening.

As (Sj,)=1 by definition, any fluctuations in the
smoothed spectrum resulting from short-time recurrences B. Probability density at long times
will cause (S;;') to be greater than 1, resulting in an en- and dependence on initial conditions

hanced probability to remain at long times. In particular, for Up until now we have been focusing on the distribution of
an optimally placed leafcorresponding to Eq10)], let us  regonance widths and on thetal probability to remain in
consider the strong scarring regime of smalThis gives the e system starting from aniforminitial state, all as a func-
exponentially large enhancement tion of the location of the leadia). In other words, while
) changing the location of the opening, we have always been
(s 1>: (L) RN (21) tracing over the initial and final states of the system. We now
in 2 ' proceed to address two related questions, both of which re-
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quire us to consider transport properties and wave functionwe see that this ratio goes to unity &‘:ﬁn has no energy
intensity correlations within the system. dependence, i.e., jb) does not lie on a short periodic orbit.
First, still taking the initial filling to be uniform, and fix- (Notice that for a Hamiltonian system, the test stdtg is
ing the location of the opening to be on a periodic orbit, it iskept fixed, centered at some enerBy, while we sweep
natural to ask how the long-time probability density remain'through resonances at different nearby energieghe ques-
ing in the system distributes itself over phase space. Classfi, then is whether the center of the test sfafeis or is not
cally, we expect the remaining probability always to be re-, .o 14 4 periodic orbit at enerdsy. Of course, one could

d|str|but_|ng itself on a time ;cale short cpmpared to themstead imagine shifting the test state so as always to be
decay time, and thus to be uniform except in a very narrow . : :

; ; . ; centered at enerdy, in which case it would be more natural
corridor encompassing the unstable orbit. The width of th

corridor scales as the size of the opening. In RMT, of courseei,0 consider short orbits at energy The difference is unim-

. gel . tant as long agE—E, is small compared to the energy
the remaining probability is also completely uniform exceptp(_)r .0 .
at phase space locations having nonzero overlap |ajthin W'dth of the Ga_lu35|a|11b>.) .If t.he position ) Of. t_he lead .
contrast, we find that in the real quantum system, the remathSEI_f doe_s not lie on a periodic orbit, the remaining de_nsny
ing probability density is strongly suppressed in a corridor ofProfile will of course be flat oveall statesb). However, if

size? around the orbit, much wider than the size of the leadP°th |a) and|b) lie on periodic orbits, the probability to be

Even more interesting is the fact that the probability densityfoUnd at|b) can be either suppressed or enhanced, depend-
can be either relatively enhanced or suppressed along tHed On whether the energy envelop8}, and Sy, are in or
other unstable orbits of the system, depending on the classRUt Of phase in the energy range being averaged over. For
cal actions associated with these orbits. simplicity, let us consider an example where the periods and
Before proceeding, we mention a closely related prob|emi,nstability exponents of the two orbits are equal. Then the
which can be thought of as a time-reversed version of théWo0 smoo_thed energy envelopes are identical, uptoa relative
one stated above. Instead of initially filling the system with aPhase shiftthe difference betweet, and #y), which can
uniform density, we inject probability in some known initial b€ adjusted by varying a magnetic flux enclgsed by one of
state and look at the probability to remain after a long timethe orbits. If the two are exactly in phas#, =Sy, , then the
as a function of this initial state. This state, which we callratio in Eq.(27) reduces to 18"}, which, we recall from
|b), should be classically well defined, i.e., it can be a phaseour previous discussion, is a quantity exponentially small in
space Gaussian, or a position or momentum state, as dithe instability exponenk. Thus, the remaining probability
cussed above. very strongly avoids the orbit on whid) is located. An-
The two problems are in general distinctHfis the non-  other way of expressing this result is that the total probability
Hermitian quantum Hamiltonian, the first involves the quan-to remain in the system at long times is exponentially sup-
tity (b|e‘iHTteth|b>, while the second measures pLessed ifttk:];ehinitiatl)_ftate ish_lori:a;:]ed on an or.bitI Whitcf(ljis “in
iH Tt —iHt ; . phase” wi e orbit on which the opening is located.
(ble™ ‘e” ™|b). However, whenl" is very small(in the The suppression of probability density given by E2j7)

regime of nonoverlapping resonange is nearly normal is of course a pure quantum interference phenomenon; it has
(HTH~HHM), the distinction between left and right eigen- - a pure qual ; P o
no analog in the classical dynamics of open systems. It is

states vanishes, and the two quantities both converge to th(? : 7
) also fundamentally a long-time effect as there is in general
eigenstate sum

no short path leading frona) to |b) which could give rise to
such intensity correlations. However, despite being intrinsi-
P ()= [(b| ¥ )[Pe~"nt, (25  cally long-time and quantum, the phenomenon can be under-
" stood only in terms of theshort-time, classicadynamics
near each of the two unstable periodic orbits. This demon-

For |b) not on the periodic orbit containing the lef), the  gya1e5 once again the power of semiclassical techniques for

quantity |(b|W,)|* is independent oy~ |(a|¥')|?, and understanding long-time quantum behavior.
follows its own chi-squared distribution with mean scalingas |, the opposite extreme case, where the two orbits are out
b b ; ; : '
S,in(E). Here; Sin(E) is the Fqurler transform of the linear- ¢ phase exactly byr[ S (E)=S2 (E+ )], the ratio in Eq.
ized (short-timg autocorrelation function of the test state (27) is dominated by the region of the envelope Whﬁ?ﬁis
[b); 'E[hlsd tlo b?dd'St'.?gu'fhfdteg?rTS'i”(?\7/3?”(5." thg maximized andSj,, minimized. (This is an energy region in
f:;?nooatine(r)ca ensity of sta € lead We €aslly ob-  which the wave functions tend to be scarred ndmr and
' 9, antiscarred nedm).) The relative intensity enhancement at
b b |b) then scales with the height of the peak S, i.e., as
b _ Sin(E) . Siin(E) i (26) A" !>1. So a large enhancement of the remaining probabil-
rem 1+ S (E)ItIN - S (E) Iyt ity is found on orbits out of phase with the one on which the
opening is located.

Averaging overE, we obtain the ratio of the remaining  We need to consider also the case where stapsnd
probability density afb) to the average remaining density at |b) are found on the same orldihe same reasoning applies
long times: if |a) and |b) are on distinct orbits that are related by a

symmetry transformation This corresponds to measuring
p?em <Slti’nlsleiln> the remaining probability along the orbit on which the lead is
=—, (27) located(or alternatively to launching the initial probability
Prem  (1/S},) along this orbit. First, consider the case whe@) and|b)
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are exactly related by time evolution in the closed systemjution governed by the kinetic terhnp?+ T(p). m andn
Then th;a two Ioca2I densities of states are identical, i.€.qre arbitrary integers, whil®,T are periodic functions of
(@l Wn)|*=[(b|W,)|* for eachn. It is easy to see from Eg. position and momentum, respectively. The system can also

(25) thatP ¢ in this case decays at long times a stead  pe thought of as a perturbation of the linear systeat map
of the usual 1/ behavior. This is easy to understand intu-33]

itively: the very long-lived resonances which survive at long
times have very little amplitude #b). More generally, let us
consider|a) and|b) lying on the same orbit but not exact
time-iterates of one another. This is possible eveajfand ~
|b) are both optima[in the sense of havin@=0, see Eq. g—g=np+(mn+1)g mod 1.

(11)]. Thus, the iterates da) may have widtho,e*" along

the unstable manifold as they pass through that point on thEor given positive integerm,n, we choose the functiong
orbit on which|b) is centered31]. If we choose a width for and T such thatm—V”(q)>0 for all g and similarly n

|b) which does not correspond to any integetthen|b) is 4 T7(p)>0 for all p. Then the system is strictly chaotic and
not any exact time iterate ¢&). However, for some timé¢  |goks everywhere locally similar to an inverted harmonic
we may still write oscillator.

The quantization of such systems is well-studied in the
literature[32]. # must be chosen such thhit=1/2x%, the
number ofh-sized cells in the classical phase space, is an
integer (N must be even to preserve the periodicity of the
guadratic terms in the potential and kinetic energior dou-
bly periodic boundary conditions, the quantum
N-dimensional Hilbert space is spanned by the position basis
?qi>, whereqg;=i/N andi=0, ... N—1. The momentum-

p—p=p+mgq mod 1,
(30

|b)=ala(t))+ vlc), (28)

where|a|?+]|y|?=1. Then the local density of states|ab
separates naturally into two parts: one of weigh® which

is exactly equal to the density of states at the openag
and another of weight 4 | «|? which is statistically indepen-
dent of the former but has the same linear energy envelop

The first, as we just saw, gives a contributionﬁhm_which space basis is given similarly Hp,), wherep,=j/N and]
scales as 17 and thus can be ignored at long times. The:0 N—1: and the two bases are related by a discrete

second behaves just aglif) were located on a different orbit £ ier transform. The quantum dynamics is then given by a
having the same linear envelope. Thus|fr and|b) on the unitary N N matrix

same orbit we obtain the same exponential suppression fac-
tor as beforg Eq. (27)], times the extra suppression factor 1

1—|a|?. This latter factor also becomes very small for small u :exr{ - |(_an+T(6)) / 4
A [31], as any wave packet optimally placed on a periodic 2

orbit comes ever closer to being an exact time iterate of any 1

other such wave packet on the same orbit. Xexl{i(—maz—V(a)) /

We note again that this effect is purely quantum mechani- 2

cal, based though it is on short-time semiclassical analysis. ] ) ) . .
Classically, only a tiny fraction of the probability distribution Each factor is evaluated in the appropriate basis, and an im-
corresponding tob) would leak out through the hole pa) plicit forward and backward Fourier transform has been per-
before the density escapes from the periodic orbit and proformed.

ceeds to distribute itself evenly over the entire accessible W€ may now perturb this unitary dynamics to allow for a
phase space. small decay rate in channal

hl. (3D

r
IV. NUMERICAL TESTS W= ( 1- E|a><a| u. (32

A. The model

We now proceed to test numerically the various resultsEquation(32) is of course the discrete-time version of the
obtained analytically in the previous section. What is re-continuous-time dynamics given in Eqg. 2 above. Since we
quired is a large ensemble of chaotic systems with each reare working in the regimd’ <1, where the decay rate per
alization having a short unstable periodic orbit of the samaime step is small, the discretization of the decay process will
instability exponent. For this purpose we consider kickednot affect the long-time behavior of the system. The decay
maps on the toroidal phase space,d)<[—1/2,1/2X  channella) can in principle represent any vector in the Hil-
[—1/2,1/2. The classical dynamics for one time step isbert space; however, for the decay to correspond to a classi-

given by cal escape routga) should be a phase-space localized state,
- such as a position or momentum state. We will find it con-
p—p=p+mg-V'(q) mod 1, venient to let/a) be a circular phase-space Gaussian in the
(299  coordinateq,p.
g—q=q+np+T'(p) mod 1. We now need to construct an ensemble of such systems,

all having the same behavior in the vicinity of a short un-
This dynamics can be obtained from the stroboscopic disstable periodic orbit. For this purpose, we setn=1, and
cretization of a kicked systerf82] with a kick potential let the potentialV and kinetic termT be odd functions of
—3ima?+V(q) applied once every time step and a free evo-their respective arguments
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3 1
V(@)= 2, [Ksin2mrq) 27K rq],

T
[e—f—ag o

(33 R

01 F

3
T(p)=21 [K/sin(2mrp)—2mK/rp]. (34)

0.01

Probability to remain

It is easy to see that the equations of motj&y. (29)]
then have a fixed point at the origin with Jacobian matrix

11
J:

0.001 |
Classical

g '
0.0001 / :
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[the system can be thought of as a perturbation of the
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FIG. 2. The probability to remain in the open quantum system is
plotted as a function of scaled timé=1I"4t. The classical predic-
tion exp(=t') is shown as a dotted curve. The quantum probability

to remain for a generic lead locatidpluse$ compares well with
the RMT prediction 1/(3t’) (dashed curve For a lead placed on
a short periodic orbit with instability exponekt=0.96, we obtain
=0.96. We may now choose each of the coefficigfts K/ the enhanced long-time probability to remajsquarel which
from a uniform distribution over the interval  agrees with the scar theory predicti¢s;,")/t’ (solid line). The
[— 0.3/(277r)2’0_3/(277r)2]. One easily sees that each sys-system size used for obtaining the datalis 120 and the decay rate
tem in this ensemble satisfies everywhere the condition Per step in the exit channel 15=0.1.

—V”">0, 1+ T">0 mentioned above, which is sufficient to
ensure hard chaos.

cat map, with perturbation vanishing neay,{§) =(0,0)].
The instability exponent is given by =cosh (3TrJ)

ability enhancement factdS;,')=11.04. Of course, bigger
enhancement factors can be observed for less unstable orbits,
as we will see below.

First, we examine more carefully the probability to re-

The ensemble-averaged probability to remain in the sysmain at long times as a function of the position of the lead.
tem aftert time steps is now computed for various positionsin Fig. 3(a) is plotted the total probability to remain in the
of the exit channefa). For simplicity, we choosga) to be a  system at time’ =2 10?, for various locations of the open-
circular phase-space Gaussian ing (all for N=230). These possible locations are located on a
40X 40 grid filling the middle 1/9 th section of the total
phase space(i.e., (q,p)e[—1/6,1/6x[—1/6,1/6])). The
bright spot at the center of the figure represents the enhanced
centered ondy.p,) and having widthy7 in both theg and  probability to remain if the opening is located exactly on the
p directions. Because the Jacobiaat the fixed point (0,0) periodic orbit. As we see from the figure, the antiscarring
is symmetric(and the stable and unstable directions are thugffect falls off guite quickly as the opening is moved away
locally orthogonal, such a wave packet, when centered atfrom the periodic orbifin fact, the size of the bright spot
(0,0), is optimal in the sense of having the slowly decayingscales ag:; see Eq.(23) and discussion followin In Fig.
short-time gutocorrelation.functipn of E@O). (Amore gen-  3(h) is plotted the theoretical quanti§s;,'), as computed
eral Gaussian wave pack@tcluding position or momentum ysing the linearized equations of motipiq. (30)] around
states as extreme limjtgentered on the periodic orbit may the periodic orbit. This is observed to be in good agreement
have a nonzero paramet@r(see Eq(11)], leading to aless jith the data. Of course the linearized equations of motion
sharp linear spectral envelope and less strong scarring anghly hold near the periodic orbit itself, and do not correctly
antiscarring effects. The qualitative behavior would, how-gdescribe classical motion in other regions of phase space.
ever, remain unchanged. However, in our case the short periodic orbit at the origin

In Fig. 2, the probability to remain in the system as aclearly dominates the data. If the classical system contained
function of the scaled time’=It is first plotted (using  several not very unstable orbitsee next subsection for an
plusses for a generic leak location. The data was collectedexamplg, several bright spots would appear in the plot, and
for systems of siz&l =120 and decay parameter=0.1. The  each could then be well reproduced using the linearized clas-
results agree well with the the RMT predictidPe.(t')  sical dynamics around the appropriate orbit.
=1/(1+t") (dashed curve For comparison, the classical  An important feature to notice in Fig. 3 is thBte(t) at
probability to remain, expft’), is plotted as a dotted curve. |ong times depends not only on the distance of the lead from
Next, we place the opening on the periodic orbit at the originthe periodic orbit but also on the direction. Greater enhance-
of phase space, and obtain the rather different behavior, withent is observed if the lead is placed along either the stable
an enhanced long-time tdéquares The asymptotic formis  or the unstable manifold of the orlithe two “diagonals” of
well reproduced by the scar theory predictidhg.(t') the would-be “square).
~(S,.Hy/t', which is shown in Fig. 2 as a solid line. For the  We now consider how the probability to remain at long
instability exponent =0.96, we observe a long-time prob- times depends on the instability exponanbf the orbit on

B. Probability to remain

a(q)~ e~ (9~ 90)/2/-+ipo(a—do)/# (35)
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FIG. 4. The long-time enhancement factor of the probability to
remain in a system when the lead is placed on a periodic orbit is
plotted as a function of the instability exponent of the orbit. Data
(a) Numerical data are shown folN= 120 (pluse$ and N= 240 (squares The N— oo
theoretical predictioqS;,,!) is shown as a solid curve. We see the
exponential increase in the probability to remain as the expanent
decreasegthe A—0 asymptotic form is given in Eq(21)].

For large \, the enhancement factor converges to 1, the RMT
prediction.

A
T(p)=---+ WCOE{ZWP). (36)

The same value oA should be used in the potential and
kinetic terms to preserve the symmetry of the Jacobian. The
Jacobian matrix of the dynamics near the periodic orbit at
(0,0) is then given by

1 1-A

1-A 1+(1-A)?| 37

- For positiveA, the trace of the Jacobian decreases and the
(b)Searteary pradiction orbit becomes less unstable. Usig- 0.0, 0.1, 0.2, 0.3, and
0.4, we obtain exponents 0.96, 0.87, 0.78, 0.68, and 0.59,
respectively.

In Fig. 4 the long-time enhancement factor Bf(t)
over its RMT value is plotted as a function of the exponent

FIG. 3. The remaining probability density after tinié=2
X 10”2, as a function of the position of the lead. (@, the numeri-
cal data is presented for an ensemble of systems ofi\#z&0; in

(b) we show the theoretical predictigf;,')/t". At the center of . o o
each plot is an unstable periodic orbit of exponkrt0.96: for a A, using plusses foN=120 and squares fdX=240. The

lead placed at that positidihite spot the probability at long times ~ theoretical predictio(S;,') is shown as a solid curve. The

is enhanced by a factor of 11 over the same probability for a generigiata consistently falls below the theoretical prediction, with

lead position(black background Notice the anisotropy: more en- the disagreement becoming more pronounced at the smaller

hancement at long times is predictéhd observedwhen the dis-  values of\. The reason is primarily a finite-size effect: the

placement of the lead away from the periodic orbit is along one ofanalytical calculations are all carried out under the assump-

the invariant manifolds. tion that the mean level spacing is much smaller than any
scale over which the linear energy envelope changes signifi-

which the lead is located. As we discussed in the previou§antly. Then the linear envelope is roughly constant on the
section, as\ gets small, resonances exponentially narrow inScalé at which individual resonances emerge, and their be-
\ should appear at the antiscarring energies, and the totQAvior can be treated statistically. Thus, the discrepancy be-
probability to remain at long times is enhanced by a facto/COMes more noticeable as-0 for fixedN, as the structures
exponentially large i\ [Eqg. (21)]. To see this effect, we N Sii, become more comparable to t_he mean level spacing.
modify the classical dynamics of E(9) by adding an ad- Indeed, we see that thd=240 data is consistently closer

ditional term to the potential and kinetic functions: than theN=120 data to the theory, which strictly applies
only in the semiclassicall— oo limit.

We observe the exponential increase in the enhancement
factor as\ decreases; indeed the very moderate exporent

A
viq)=--- = (277)7C05(27Tq)’ =0.59 produces an enhancement factor of well over 100 in
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the long-time probability to remairn =0.1 would in theory
produce an average long-time enhancement ok 1@
provided we were able to go to a large enough system, wait
for a long enough time, and collect enough statistics to ob-
serve it[from Eg. (15) we see that the asymptoticS}jt’
form holds only fort’>S; 1.

C. Phase space distribution of long-time probability density

. - . a) In-phase periodic orbits
We now consider predictions concerning the enhancement la) Imphase p

or suppression of the long-time probability near orloitiser
than the one on which the lead is locatsee discussion in
Sec. Il B). To test these predictions we need an ensemble of
systems all having two periodic orbits in common, and the
ability to vary the action phase difference between them. In
our example the two orbits have the same local dynamics in
their respective neighborhoods, though this of course is not
necessary to produce the desired effect.

We work on the phase spaceq,p)e[—1/4,3/4
X[—=1/2,1/2, setm=n=2 in the equations of motiofEq.
(29)], and impose the constrailt, = — 3K 3 on the kick po-
tential[see Eq(33)]. This condition ensures the presence of
a fixed point at (1/2,0) in addition to the usual one(@&D)
on which we have been focusing so far. The linearized dy-
namics around each orbit is given by the Jacobian

1 2
J_25

(b) Out-of-phase periodic orbits
and the exponent per period is=1.76. Other orbits are of FIG. 5. The remaining probability distribution at very long

course pregent, but they change with the coefflc!Kr,JtsKr’ ’ times is shown for an ensemble of systefo$ size N=2380) all
and so their effects are expected to cancel out In the proceﬂﬁving two short periodic orbits in common, each with instability
of ensemble averaging. In order for the two orbits not 0 be,ponenty =1.76. In both cases, the lead is centered on the peri-
related by a symmetry transformation we only need all the,gic orbit on the left side of the plot. The remaining probability is
K to be nonvanishing. strongly suppressed on that orbit and less so on its invariant mani-
Our analysis showed that the behavior of the remainingolds. The action of the orbit on the right is chosen to be in phase
probability density at long times should depend strongly onwith the first one in caséa), so that probability there is also sup-
the relative action phase difference between the two orbitgressed, and exactly out of phase with it in cése leading to an
This phase difference can be easily controlled by adjustingnhancement of the probability density on the second orbit and its
Ko(dp— pa=NK,/4). Fixing K, at a nonzero value which invariant manifolds. See next figure for quantitative comparison
producese,— ¢,=0(mod 2rr), we are free to var|Kz and  with the theory.
the three coefficient&, consistent with the constraints 2
—V">0 and 2+ T">0 (which are sufficient to ensure hard K, appropriately, we again perform ensemble averaging over
chaos. We obtain then, foN=80 andI'=0.1, the results the other parameters and obtain the results in Hig. 3he
shown in Fig. %a). Clearly the remaining probability is very same suppression is still seen along the orbit containing the
strongly suppressed on the orbit on the left, where the lead iead and its invariant manifolds. However, we now see, as
located(as we saw in the previous section, the probability toexpected, amnhancemendf the remaining probability den-
remain exactly on the orbit falls off faster with time than sity near the orbit on the right. The enhancement factor on
probability elsewhere, so the numerical value of the relativehat orbit itself is 1.78; the theoretical prediction is 1.67.
suppression there will be time dependeflte also see mild The predicted relative intensity at the orbit (1/2[Bq.
density suppression on the two orthogonal invariant mani{27)] given a lead at (0,0) is plotted in Fig. 6 as a function of
folds of this orbit. The phenomenon we want to focus on,the action phase difference between the two orki@ne
though, is the suppression we observe on the orbit on theould imagine obtaining such a plot in a physical system by
right side of Fig. %a). The observed suppression factor right tuning a weak magnetic field which had little effect on the
on the periodic orbit at (1/2,0) is 0.37, compared with theclassical dynamics but did change the relative phase between
predicted value 0.45; again the discrepancy may possibly bevo orbits enclosing different amounts of flux. Alternatively,
attributed to finite size effects. As expected, we also observ# the periods of the two orbits differed, the orbits could be
probability suppression along the manifolds of this secondbserved to go in and out of phase with one another as one
orbit. changed the energy range in which the resonances were
We now consider the opposite case, where the two orbitpopulated. The suppression and enhancement factors in this
are exactly out of phadep,— ¢,= w(mod 277)]. Adjusting  case never get very far from unity, due to the relatively large



5336 L. KAPLAN PRE 59

2 ' ; ' ; ' ; their very nature produce quantum effects in phase space
Soartmoory T T regions of sizefi surrounding the orbit; thus our intuition

T tells us that no fundamentally new scar effects are expected
in most cases for multichannel leads.

We have seen that an analysis of short time classical mo-
tion in a chaotic system can shed much light on quantum
behavior on the scale of the decay time, which is much larger
than the Heisenberg time and every other time scale in the
system. This is somewhat counterintuitive, as the narrow
os | % ] resonance regime is by its very nature nonclassical and is
¥ associated with the very long-time behavior of the system.
Even though in some casé¢s.g., in the presence of strong
. , . , . , diffraction or caustics semiclassical methods may not be
° ! 2 race betwean orbis a and ° ¢ sufficient to predict the properties of individual high-energy

quantum chaotic wave functions, they are still very powerful

FIG. 6. The predicted relative intensity at long times on a peri-for making statistical predictions of the sort described in this
odic orbit other than the one containing the lead is plotted as Paper. We note that a small change in the system potential,
function of the relative phase between the two orksislid curve. or the presence of a few impurity scatterers may completely

For reference, the phase-space averaged intensity is plotted aschange the character of individual resonances in an open
dashed line. Intensity suppression is predicted and observed wh(;sg/?]

Relative intensity on orbit b

. . ) X stem, making comparison with exact semiclassical wave
the orbits are in phase, and enhancement is seen when the orbits

d  of bh 4(b) i iU fi Th ctions futile. On the other hand, the scar theory predic-
exactly out of phasgcompare(a) and (b) in previous figuré The — ions “\which concern statistical properties such as the distri-
data are collected for an ensemble of systems With80, and each

orbit has instability exponent=1.76. butiqn of resonance widths, are robust to suph changgs in the
details of the system, as long as the dynamics of the first few

bounces is known. In a situation where the classical dynam-
ics of the quantum system under study is not known reliably
ven for short times, one could use methods similar to those
escribed here to search for the short unstable periodic or-
its. This can be done by moving the position of the lead, or,
more practically in many situations, by adjusting some sys-

tem parameter which changes the classical dynamics of the

V. CONCLUSION system. For a given classical system and lead position, one

We have concentrated throughout on leakage through §'€n sweeps through a weak magnetic field or some other
single decay channel which is very well localized in phaseP@rameter not affectlng the classical dynamics, and searphes
space(leak area much less thdr). One would like to un- for a large fraction of very narrow resonances, occurring
derstand more generally possible scar effects for multicharR€riodically in the magnetic field strength.
nel leads as well as for leads wide enough to produce over- Clearly the ideas described here can also be extended to
lapping resonances. A detailed treatment of such effects iludy two-lead systems, where properties such as conduc-
outside the scope of the present work. However, one possibf@Nce peak height distributions can be analyzed. In analogy
extension turns out to be relatively straightforward, and theVith the present work, the results will strongly depend on
results suggest that the most interesting scar effects are ahether one or both of the leads is located on a short un-
ready captured in the single channel analysis. SpecificaIIyStable classical Qrb!t. Whgre the leads are found on two dif-
considerM decay channels, each with a slow decay rate, a rent short penpdlc orbits, the phase difference between
in Eq. (6). If the sum of these classical rates is small com-thém can be varied to produce an enhancement or suppres-
pared to the quantum level spacing, the resulting resonanc&¥n of the average conductance, as suggested by the results
will be nonoverlapping, and a perturbative approach to theof the present work. Even stronger eff_ect; can _be observed if
problem is valid. In RMT, the probability to remain at long the leads are located on the same periodic orbit, or if the two
times is given by a product of factors associated with each ofPits are related to each other by a symmetry of the system.
the leadSEq. (8)]. In the case where one of the channels These issues and other related questions are addressed fully
happens to be close to a short periodic orbit, the intensitf? @ forthcoming papef27]. Certainly much more work
distribution giving rise to this one factor only will be af- Needs to be done generally in understanding classical dynam-
fected, producing the same overall enhancement factdfS €ffects on the quantum properties of open chaotic sys-
(Si.1y obtained previously. The total probabili,e, now  ©€MS:
falls off much more quickly with time than in the single-
channel case, reflecting the fact that it is much harder to find
a resonance which is slowly decaying through of the
channels. However, the essential observation of an enhanced This research was supported by the National Science
probability of finding very narrow resonances survives.Foundation under Grant No. 66-701-7557-2-30. Initial work
Clearly the analysis is more complicated for correlated decapn this project was performed during a stay at the Technion
channels, and for the case of larger total decay rates wheia Israel. The author thanks E. J. Heller for many useful
the resonances become overlapping. Still, periodic orbits bgonversations.

value of the instability exponemt chosen for our example.

Values obtained numerically, as described in the precedin
paragraphs, are given for comparison with scar theory, alon
with statistical error bars. The dashed line at 1 represents trb
RMT prediction.
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